DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Item
    Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus : evidence for the presence of catechins.
    (2023) Nunes, Damiana Antônia de Fátima; Lopes, Gabriela Francine Martins; Nizer, Waleska Stephanie da Cruz; Aguilar, Mariana Guerra de; Santos, Felipe Rocha da Silva; Sousa, Grasiely Faria de; Ferraz, Ariane Coelho; Duarte, Lucienir Pains; Brandão, Geraldo Célio; Vieira Filho, Sidney Augusto; Magalhães, Cíntia Lopes de Brito; Ferreira, Jaqueline Maria Siqueira; Magalhães, José Carlos de
    Ethnopharmacological relevance: Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. Aim of the study: This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. Materials and methods: Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). Results: The leaves (LAE; EC50 12.0 μg/mL) and branches (TAE; EC50 101.0 μg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells.
  • Item
    Insignificant level of in vitro cytotoxicity, anti‑rotavirus, antibacterial, and antifungal activities of N‑alkylmaleamic acids.
    (2013) Belinelo, Valdenir José; Campos, Michele Soares Tacchi; Antunes, Rafael Martins; Assenço, Regina Aparecida Gomes; Vieira Filho, Sidney Augusto; Lanna, Maria Célia da Silva; Marçal, Eduardo da Costa; Fonseca, Thaisa Helena Silva; Gomes, Maria Aparecida; Magalhães, José Carlos de
    By reacting maleic anhydride with amines, we synthesized the derivatives N‑ethyl, N‑(2‑ethylamine), N‑piperidinyl, N‑phenyl, and N‑phenylhydrazinyl maleamic acids. The purity of these products was initially verified by melting range and the presence of only one spot observed by thin layer chromatography. The chemical structures of the obtained N‑alkyl maleamic acids were confirmed through infrared (IR) and hydrogen and carbon nuclear magnetic resonance (1 H and 13C NMR) spectrometry. Due to the already proven pharmacological activity of maleimides, maleic anhydride and its N‑alkyl maleamic acids were subjected to in vitro assays to observe antiviral (SA‑11 rotavirus), antibacterial (Escherichia coli, Staphylococcus aureus, and Bacillus cereus), antifungal (Colletotrichum musae, Fusarium solani f. sp. phaseoli, Fusarium solani f. sp. piperis Alb., and Penicillium sp.), and antiprotozoal (Trichomonas vaginalis, Giardia lamblia, and Entamoeba histolytica) effects. To study the anti‑rotavirus properties, firstly the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2‑5‑diphenyltetrazolium bromide (MTT) method was used to establish the median cytotoxicity concentration (CC50) of the compounds, using MA‑104 cell line. Under the experimental conditions used, cytotoxic, anti‑rotavirus, antibacterial, and antifungal properties were not observed for these compounds.
  • Item
    Cytotoxicity, anti-poliovirus activity and in silico biological evaluation of constituents from Maytenus gonoclada (Celastraceae).
    (2014) Oliveira, Mauro Lúcio Gonçalves de; Assenço, Regina Aparecida Gomes; Silva, Grácia Divina de Fátima; Lopes, Júlio César Dias; Silva, Fernando César; Lanna, Maria Célia da Silva; Magalhães, José Carlos de; Duarte, Lucienir Pains; Vieira Filho, Sidney Augusto
    Objective: The in silico free access web tools PASS online and ChemMapper were used to predict potential biological activities of compounds 1 to 8 isolated from Maytenus gonoclada (Celastraceae). The constituents 4’-O-methylepigalocatequin (6), tingenone (7) and proanthocyanidin A (8), and ethanolic extracts were subjected to in vitro cytotoxicity using VERO cells and anti-Poliovirus assays. Methods: QSAR and molecular superposition, correlating the average number of pharmacophores were used in the prediction studies. Cellular line VERO ATCC CCL-81 was used to determine anti-Poliovirus effect, observed by colorimetric (MTT) method. The annexing V/propidium iodide assay was used to determine the occurrence of apoptosis in the cytotoxicity assays. Results: The experimental results found for constituents 6-8 were in accordance with observed data obtained through PASS online and ChemMapper simulation. Conclusion: Compound 7 showed higher cytotoxic and apoptosis induction properties, and 6 and 8 presented anti-Poliovirus activity.