DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Item
    A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis.
    (2019) Sousa, Jéssica Karine Távora de; Antinarelli, Luciana Maria Ribeiro; Mendonça, Débora Vasconcelos Costa; Lage, Daniela Pagliara; Tavares, Grasiele de Sousa Vieira; Dias, Daniel Silva; Ribeiro, Patrícia Aparecida Fernandes; Ribeiro, Fernanda Ludolf; Coelho, Vinicio Tadeu da Silva; Silva, João Augusto Oliveira da; Melo, Luísa Helena Perin de; Oliveira, Bianka A.; Alvarenga, Denis Fernando; Chávez Fumagalli, Miguel Angel; Brandão, Geraldo Célio; Vandack, Nobre; Pereira, Guilherme Rocha; Coimbra, Elaine Soares; Coelho, Eduardo Antônio Ferraz
    The identification of new therapeutics to treat leishmaniasis is desirable, since available drugs are toxic and present high cost and/or poor availability. Therefore, the discovery of safer, more effective and selective pharmaceutical options is of utmost importance. Efforts towards the development of new candidates based on molecule analogs with known biological functions have been an interesting and cost-effective strategy. In this context, quinoline derivatives have proven to be effective biological activities against distinct diseases. In the present study, a new chloroquinoline derivate, AM1009, was in vitro tested against two Leishmania species that cause leishmaniasis. The present study analyzed the necessary inhibitory concentration to preclude 50% of the Leishmania promastigotes and axenic amastigotes (EC50 value), as well as the inhibitory concentrations to preclude 50% of the murine macrophages and human red blood cells (CC50 and RBC50 values, respectively). In addition, the treatment of infected macrophages and the inhibition of infection using pre-treated parasites were also investigated, as was the mechanism of action of the molecule in L. amazonensis. To investigate the in vivo therapeutic effect, BALB/c mice were infected with L. amazonensis and later treated with AM1009. Parasitological and immunological parameters were also evaluated. Clioquinol, a known antileishmanial quinoline derivate, and amphotericin B (AmpB), were used as molecule and drug controls, respectively. Results in both in vitro and in vivo experiments showed a better and more selective action of AM1009 to kill the in vitro parasites, as well as in treating infected mice, when compared to results obtained using clioquinol or AmpB. AM1009-treated animals presented significantly lower average lesion diameter and parasite burden in the infected tissue and organs evaluated in this study, as well as a more polarized antileishmanial Th1 immune response and low renal and hepatic toxicity. This result suggests that AM1009 should be considered a possible therapeutic target to be evaluated in future studies for treatment against leishmaniasis.
  • Item
    Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system.
    (2016) Duarte, Mariana Costa; Lage, Letícia Martins dos Reis; Lage, Daniela Pagliara; Martins, Vivian Tamietti; Carvalho, Ana Maria Ravena Severino; Roatt, Bruno Mendes; Souza, Daniel Menezes; Tavares, Carlos Alberto Pereira; Alves, Ricardo José; Barichello, José Mario; Coelho, Eduardo Antônio Ferraz
    Newtherapeutics are urgently needed to treat visceral leishmaniasis (VL). Due to the fact that drug discovery is a long and expensive process, the development of delivery systems to carry old and toxic drugs could be considered, as well as the evaluation of new molecules that have already shown to present biological activity. In this context, the present study evaluated the in vitro and in vivo antileishmanial activity of an 8-hydroxyquinoline (8-HQN)-containing polymeric micelle (8-HQN/M) system against Leishmania infantum, the main causative agent of VL in the Americas. The experimental strategy used was based on the evaluation of the parasite load by a limiting-dilution technique in the spleen, liver, bone marrow and draining lymph nodes of the infected and treated animals, as well as by a quantitative PCR (qPCR) technique to also assess the splenic parasite load. The immune response developed was evaluated by the production of IFN-γ, IL-4, IL-10, IL-12 and GM-CSF cytokines, as well as by antileishmanial nitrite dosage and antibodies production. Hepatic and renal enzymes were also investigated to verify cellular injury as a result of treatments toxicity. In the results, 8-HQN/M-treated mice, when compared to the other groups: saline, free amphotericin B (AmpB, as a drug control), 8-HQN and B-8-HQN/M (as a micelle control) showed more significant reductions in their parasite burden in all evaluated organs. These animals also showed an antileishmanial Th1 immunity, which was represented by high levels of IFN-γ, IL-12, GM-CSF and nitrite, associated with a low production of IL-4 and IL-10 and anti-Leishmania IgG1 isotype antibodies. In addition, any hepatic or renal damage was found in these treated animals. In conclusion, 8-HQN/M was effective in treating L. infantum-infected BALB/c mice, and can be considered alone, or combined with other drugs, as an alternative treatment for VL.
  • Item
    An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis.
    (2016) Lage, Letícia Martins dos Reis; Barichello, José Mario; Lage, Daniela Pagliara; Mendonça, Débora Vasconcelos Costa; Carvalho, Ana Maria Ravena Severino; Rodrigues, Marcella Rezende; Souza, Daniel Menezes; Roatt, Bruno Mendes; Alves, Ricardo José; Tavares, Carlos Alberto Pereira; Coelho, Eduardo Antônio Ferraz; Duarte, Mariana Costa