DEFAR - Departamento de Farmácia
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530
Navegar
11 resultados
Resultados da Pesquisa
Item Synthesis and antimicrobial activity of molecular hybrids based on eugenol and chloramphenicol pharmacophores.(2023) Oliveira, Lucas Martins; Siqueira, Fallon dos Santos; Silva, Michelle T.; Machado, José Vaz Cardoso; Cordeiro, Cleydson Finotti; Diniz, Lívia de Figueiredo; Campos, Marli Matiko Anraku de; Franco, Lucas Lopardi; Souza, Thiago Belarmino de; Hawkes, Jamie Anthony; Carvalho, Diogo TeixeiraIn the constant search for new pharmacological compounds, molecular hybridisation is a well-known technique whereby two or more known pharmacophoric subunits are combined to create a new “hybrid” compound. This hybrid is expected to maintain the characteristics of the original compounds whilst demonstrating improvements to their pharmacological action. Accordingly, we report here a series of molecular hybrid compounds based upon eugenol and chloramphenicol pharmacophores. The hybrid compounds were screened for their in vitro antimicrobial potential against Gram-negative and Gram-positive bacteria and also rapidly growing mycobacteria (RGM). The results highlight that the antimicrobial profiles of the hybrid compounds improve in a very clear fashion when moving through the series. The most prominent results were found when comparing the activity of the hybrid compounds against some of the multidrug-resistant clinical isolates of Pseudomonas aeruginosa, methicillin-resistant clinical isolates of Staphylococcus aureus (MRSA) and clinical isolates of rapidly growing mycobacteria.Item In vitro and in silico evaluation of the schistosomicidal activity of eugenol derivatives using biochemical, molecular, and morphological tools.(2022) Souza, Isabella Maria Monteiro de; Novaes, Rômulo Dias; Gonçalves, Reggiani Vilela; Fialho, Felipe Leonardo Bley; Carvalho, Diogo Teixeira; Souza, Thiago Belarmino de; Dias, Danielle Ferreira; Lavorato, Stefânia Neiva; Souza, Raquel Lopes Martins; Marques, Marcos José; Castro, Aline PereiraBackground: Eugenol shows both antibacterial and antiparasitic activities, suggesting that it might be evaluated as an option for the treatment of praziquantel-resistant schistosome. Methods: The in vitro activities of three eugenol derivatives (FB1, FB4 and FB9) on adult worms from Schistosoma mansoni were examined by fluorescence and scanning electron microscopy to analyze effects on the excretory system and integument damage, respectively. Biochemical tests with verapamil (a calcium channel antagonist) and ouabain (a Na+ /K+-ATPase pump inhibitor) were used to characterize eugenol derivative interactions with calcium channels and the Na+/K+-ATPase, while in silico analysis identified potential Na+/K+-ATPase binding sites. Results: The compounds showed effective doses (ED50) of 0.324 mM (FB1), 0.167 mM (FB4), and 0.340 mM (FB9). In addition, FB4 (0.322 mM), which showed the lowest ED50, ED90 and ED100 (p < 0.05), caused the most damage to the excretory system and integument, according to both fluorescence and scanning electron microscopy analysis. The death of adult worms was delayed by ouabain treatment plus FB1 (192 versus 72 hours) and FB9 (192 versus 168 hours), but the response to FB4 was the same in the presence or absence of ouabain. Besides, no changes were noted when all of the eugenol derivatives were combined with verapamil. Moreover, FB1 and FB9 inhibited Na+/K+-ATPase activity according to in silico analysis but FB4 did not show a time- dependent relationship and may act on targets other than the parasite Na+/K+-ATPase. Conclusion: Eugenol derivatives, mainly FB4 when compared to FB1 and FB9, seem to act more effectively on the integument of adult S. mansoni worms.Item New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis.(2023) Péret, Vinícius Augusto Campos; Reis, Rúbia Castro Fernandes Melo; Braga, Saulo Fehelberg Pinto; Benedetti, Monique Dias; Caldas, Ivo Santana; Carvalho, Diogo Teixeira; Santana, Luiz Felipe de Andrade; Johann, Susana; Souza, Thiago Belarmino deThis work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectro- metric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6–75.3 μM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 μM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 μM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 μM) as miconazole (MIC: 74.9 μM) and more than 5 times more active than fluconazole (MIC: 209.0 μM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.Item Benzophenone derivatives showed dual anti-inflammatory and antiproliferative activities by inhibiting cox enzymes and promote cyclin e downregulation.(2022) Folquitto, Laís Regina dos Santos; Souza, Thiago Belarmino de; Januário, Jaqueline Pereira; Nascimento, Isadora M.; Brandão, Brenda Tavares de Vasconcelos; Moreira, Maria E. C.; Horvath, Renato de Oliveira; Santos, Marcelo Henrique dos; Coelho, Luiz Felipe Leomil; Veloso, Marcia Paranho; Soares, Marisi Gomes; Carvalho, Diogo Teixeira; Ionta, Marisa; Paula, Daniela Aparecida Chagas de; Dias, Danielle FerreiraConsidering the promising antitumor effects of compounds with dual anti-inflammatory and antiproliferative activities, thus benzophenones analogs (2-7) were evaluated on in vivo anti- inflammatory assay and molecular docking analysis. Those with the best molecular docking results were in vitro evaluated on cyclooxygenase (COX) enzymes and tested regarding antiproliferative activity. All derivatives displayed in vivo anti-inflammatory activity. Among them, the substances 2’-hydroxy-4’-benzoylphenyl-β-D-glucopyranoside (4), 4-hydroxy-4’-methoxybenzophenone (5) and 4’-(4’’-methoxybenzoyl)phenyl-β-D-glucopyranoside (7)showed the best values of Glide Score in COX-2 docking evaluation and 4 and 5 selectively inhibited COX-2 and COX-1 in vitro enzymatic assay, respectively. Thus, 4 and 5 were tested against breast cancer (MCF-7, MDA-MB-231, Hs578T) and non-small-cell-lung cancer (A549) cell lines. The estrogen-positive MCF-7 cell line was more responsive compared to other tested cell lines. They induced cell cycle arrest at G1/S transition in MCF-7 cell line once there was an increase in G0/G1 population with concomitant reduction of S population. The antiproliferative activity of these substances on MCF-7 was associated with their ability to inhibit cyclin E expression, a critical regulator of G1/S transition. Taken together, the data indicate that 4 and 5 have dual anti-inflammatory and antiproliferative activities and support further studies to evaluate their antitumor potential.Item Glucosyl-1,2,3-triazoles derived from eugenol and analogues : synthesis, anti-Candida activity, and molecular modeling studies in CYP-51.(2021) Magalhães, Lorena Severiano de; Reis, Adriana Cotta Cardoso; Nakao, Izadora Amaral; Péret, Vinícius Augusto Campos; Reis, Rúbia Castro Fernandes Melo; Silva, Naiara Chaves; Dias, Amanda Latercia Tranches; Carvalho, Diogo Teixeira; Dias, Danielle Ferreira; Brandão, Geraldo Célio; Braga, Saulo Fehelberg Pinto; Souza, Thiago Belarmino deThis work describes the synthesis, anti-Candida, and molecular modeling stud- ies of eighteen new glucosyl-1,2,3-triazoles derived from eugenol and corre- lated phenols. The new compounds were characterized by combined Fourier Transform Infrared, 1 H and 13C nuclear magnetic resonance and spectroscopy of high-resolution mass spectrometry. The synthesized compounds did not show significant cytotoxicity against healthy fibroblast human cells (MCR-5) providing interesting selectivity indexes (SI) to active compounds. Considering the antifun- gal activity, nine compounds showed anti-Candida potential and the peracety- lated triazoles 17 and 18 were the most promising ones. Eugenol derivative 17 was active against three species of Candida at 26.1–52.1 μM. This compound was four times more potent than fluconazole against Candida krusei and less toxic (SI > 6.6) against the MCR-5 cells than fluconazole (SI > 3.3) considering this strain. Dihydroeugenol derivative 18 showed similar activity to 17 and was four times more potent and less toxic than fluconazole against C. krusei. The deacety- lated glucosides and non-glucosylated corresponding derivatives did not show considerable antifungal action, suggesting that the acetyl groups are essential for their anti-Candida activity. Molecular docking coupled with molecular dynam- ics showed that 14α-lanosterol demethylase is a feasible molecular target, since 17 and 18 could bind to this enzyme once deacetylated in vivo, thereby acting as prodrugs. Also, these studies demonstrated the importance of hydrophobic sub- stituents at the phenyl ring.Item Synthesis of eugenol-derived glucosides and evaluation of their ability in inhibiting the angiotensin converting enzyme.(2020) Alvarenga, Dalila Junqueira; Matias, Laira Maria Faria; Cordeiro, Cleydson Finotti; Souza, Thiago Belarmino de; Lavorato, Stefânia Neiva; Pereira, Marília Gabriella Alves Goulart; Dias, Danielle Ferreira; Carvalho, Diogo TeixeiraWe report here a series of glucosides which are active as inhibi tors of the angiotensin converting enzyme (ACE). They are struc turally related to the natural compound eugenol and exhibited significant inhibition values. Their syntheses were expeditious and we could obtain informative docking plots of them complexed to this enzyme. A glucoside derived from eugenol, carrying a carbox ylic group in the aglycone, was the most active of them (with an IC50 of 0.4 mM) and showed good binding energies in docking studies with ACE. Moreover, computational prediction of toxicity risks, physicochemical properties and drug score show that the glucoside derivative of eugenol is a suitable compound for opti misation studies aimed at finding new drug candidates.Item Synthesis and structural characterization of new benzylidene glycosides, cytotoxicity against cancer cell lines and molecular modeling studies.(2021) Péret, Vinícius Augusto Campos; Reis, Adriana Cotta Cardoso; Silva, Naiara Chaves; Dias, Amanda Latercia Tranches; Carvalho, Diogo Teixeira; Dias, Danielle Ferreira; Braga, Saulo Fehelberg Pinto; Brandão, Geraldo Célio; Souza, Thiago Belarmino deThis work describes the synthesis, structural characterization (by combined Fourier Transform Infrared - FTIR, 1H and 13C Nuclear Magnetic Resonance - NMR spectroscopy and High Resolution Mass Spectrometry - HRMS) and biological evaluation of a new series of glycosides designed from a benzylidene glucoside derived from eugenol (23) active against Candida glabrata. The mass accuracy between the calculated and found values observed in HRMS analyses were lower than 5 ppm, which are acceptable for proposing a molecular formula using this technique. We decided to keep the benzylidene group of 23, while changing either the saccharide unit (glucose or galactose) or the natural aglycone (eugenol, isoeugenol, dihydroeugenol or guaiacol) to check their influence in antifungal activity. Since the chemical modifications performed did not contribute to enhance the antifungal activity, the synthesized compounds (23– 30) were further screened against four cancer cell lines (HeLa: cervix carcinoma; MDA-MB-231: breast carcinoma; T-24: urinary bladder carcinoma; and TOV-21G: ovarian carcinoma). The glucoside 27 showed promising activities (IC50 10.08–59.91 μM) against all the assayed cancer cell lines and higher values of selectivity index than doxorubicin, the control drug. The galactoside 28 demonstrated interesting results against HeLa, MDA-MB-231 and T-24 cells. This compound was active at 17.41 μM with a selectivity index greater than 13.7 against the HeLa cells, while doxorubicin was active at 10.01 μM with a selectivity index close to 1.5 considering this cell line. Further, we performed docking studies of these compounds with type II topoisomerase-DNA complex (TOP2) in order to try to explain their mechanism of action.Item Synthesis, activity, and molecular modeling studies of 1,2,3‐ triazole derivatives from natural phenylpropanoids as new trypanocidal agents.(2019) Souza, Thiago Belarmino de; Caldas, Ivo Santana; Paula, Favero Reisdorfer; Rodrigues, Camila Coelho; Carvalho, Diogo Teixeira; Dias, Danielle FerreiraThe search for compounds with new structural scaffolds is an important tool to the discovery of new drugs against Chagas disease. We report herein the synthesis of 1,2,3‐triazoles obtained from eugenol and di‐hydroeugenol and their in vitro and in vivo trypanocidal activity. These derivatives were obtained by a three‐step objective route and were suitably characterized by 1H and 13C nuclear magnetic resonance spectroscopy and high‐resolution mass spectrometry. Two compounds (9 and 10 ) showed activity against epimastigote forms of Trypanosoma cruzi (Y strain) in the range 42.8–88.4 μM and were weakly toxic to cardiomyoblast cells (H9c2 cells). The triazole 10 was the most active derivative and could reduce more than 50% of parasitemia after a 100‐mg/kg oral treatment of mice infected with T. cruzi . Molecular docking studies suggested this compound could act as a trypanocidal agent by inhibiting cruzain, an essential enzyme for T. cruzi metabolism, usually inhibited by triazole compounds.Item Phenylpropanoid-based sulfonamide promotes cyclin D1 and cyclin E downregulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line.(2019) Barbosa, Helloana Azevedo; Silva, Guilherme Álvaro Ferreira da; Silva, Carolina Faria; Souza, Thiago Belarmino de; Dias, Danielle Ferreira; Paula, Ana Cláudia Chagas de; Ionta, Marisa; Carvalho, Diogo TeixeiraCancer is one of the most critical problems of public health in the world and one of the main challenges for medicine. Different biological effects have been reported for sulfonamide-based compounds including antibacterial, antifungal, and antitumor activities. Herein, a series of phenylpropanoid-based sulfonamides (4a, 4a′, 4b, 4b′, 5a, 5a′, 5b and 5b′) were synthesized and their cytotoxic activity was evaluated against four cell lines derived from human tumours (A549 – lung, MCF-7 – breast, Hep G2 - hepatocellular carcinoma, and HT-144-melanoma). Cell viability was significantly reduced in the MCF-7 cell line when compounds 4b, 4b′ and 5a were used; IC50 values were lower than those found for their precursors (eugenol and dihydroeugenol) and sulfanilamide. We observed that 4b induced cell cycle arrest at G1/S transition. This is probably due to its ability to reduce cyclin D1 and cyclin E expression. Moreover, 4b also induced apoptosis in MCF-7 cells as demonstrated by an increase in the cell population positive for annexin V in treated cultures in comparison to the control group. Taken together, the data showed that 4b is a promising antitumor agent and it should be considered for further in vivo studies.Item Synthesis, activity, and docking studies of eugenol-based glucosides as new agents against Candida sp.(2018) Hipolito, Taciane Maira Magalhães; Bastos, Guilherme Tadeu Lemos; Barbosa, Thulio Wliandon Lemos; Souza, Thiago Belarmino de; Coelho, Luiz Felipe Leomil; Dias, Amanda Latercia Tranches; Rodríguez, Ihosvany Camps; Santos, Marcelo Henrique dos; Dias, Danielle Ferreira; Franco, Lucas Lopardi; Carvalho, Diogo TeixeiraSeventeen new synthetic derivatives of eugenol (6, 8–15 and 8′‐15′) were planned following literature reports on antifungal activities of nitroeugenol and eugenol glucoside. The anti‐Candida activity of these compounds was investigated by in vitro assay, and the cytotoxicity evaluation was performed with the most active compounds. The peracetylated glucosides presented better biological results than their hydroxylated analogues. The glucoside 11, a 4‐nitrobenzamide, showed the best potency (MIC50 range 11.0–151.84 μm), the wider spectrum of action, and overall the best selectivity indexes, especially against C. tropicalis (~30) and C. krusei (~15). To investigate its possible mechanism of action, glucoside 11 was subjected to molecular docking studies with Candida sp. enzymes involved in ergosterol biosynthesis. Results have shown that the peracetyl glucosyl moiety and the 4‐nitrobenzamide group in 11 are effectively involved in its high affinity with the active site of squalene epoxidase.