DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Ketamine potentiates TRPV1 receptor signaling in the peripheral nociceptive pathways.
    (2020) Costa, Flavia Lage Pessoa da; Pinto, Mauro Cunha Xavier; Astoni, Duana Carvalho dos Santos; Carobin, Natália Virtude; Jesus, Itamar Couto Guedes de; Ferreira, Luana Assis; Guatimosim, Silvia; Silva, Juliana Figueira; Castro Junior, Célio José de
    TRPV1 is a cation channel expressed in peripheral nociceptive pathways and its activation can trigger noci- ception signals to the brain. Ketamine is an intravenous anesthetic routinely used for anesthesia induction and with potent analgesic activity. Despite its proven depressant action on peripheral sensory pathways, the re- lationship between ketamine and TRPV1 receptors is still unclear. In this study, we evaluated the effect of ketamine injected peripherally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of ketamine on Ca2+ transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor (HEK-TRPV1 cells). Intraplantar administration of ketamine caused an unexpected increase in nocifensive behavior induced by capsaicin. Incubation of HEK-TRPV1 cells with 10 μM ketamine increased TRPV1 and PKCє phosphorylation. Ketamine potentiated capsaicin-induced Ca2+ transients in HEK-TRPV1 cells and DRG neurons. Ketamine also prevented TRPV1 receptor desensitization induced by successive applications of capsaicin. єV1-2, a PKCє inhibitor, reduced potentiation of capsaicin-induced Ca2+ transients by ketamine. Taken together, our data indicate that ketamine potentiates TRPV1 receptor sensitivity to capsaicin through a mechanism dependent on PKCє activity.
  • Item
    Phoneutria toxin PnTx3-5 inhibits TRPV1 channel with antinociceptive action in an orofacial pain model.
    (2020) Pereira, Elizete Maria Rita; Souza, Jéssica Mabelle; Carobin, Natália Virtude; Silva, Juliana Figueira da; Astoni, Duana Carvalho dos Santos; Silva Júnior, Cláudio Antônio da; Binda, Nancy Scardua; Borges, Marcia Helena; Nagem, Ronaldo Alves Pinto; Kushmerick, Christopher; Ferreira, Juliano; Castro Junior, Célio José de; Ribeiro, Fabiola Mara; Gomez, Marcus Vinicius
    Capsaicin, an agonist of TRPV1, evokes intracellular [Ca2+] transients and glutamate release from perfused trigeminal ganglion. The spider toxin PnTx3-5, native or recombinant is more potent than the selective TRPV1 blocker SB-366791 with IC50 of 47 ± 0.18 nM, 45 ± 1.18 nM and 390 ± 5.1 nM in the same experimental conditions. PnTx3-5 is thus more potent than the selective TRPV1 blocker SB-366791. PnTx3-5 (40 nM) and SB-366791 (3 μM) also inhibited the capsaicin-induced increase in intracellular Ca2+ in HEK293 cells transfected with TRPV1 by 75 ± 16% and 84 ± 3.2%, respectively. In HEK293 cells transfected with TRPA1, cinnamaldehyde (30 μM) generated an increase in intracellular Ca2+ that was blocked by the TRPA1 antagonist HC-030031 (10 μM, 89% inhibition), but not by PnTx3-5 (40 nM), indicating selectivity of the toxin for TRPV1. In whole-cell patch-clamp experiments on HEK293 cells transfected with TRPV1, capsaicin (10 μM) generated inward currents that were blocked by SB-366791 and by both native and recombinant PnTx3-5 by 47 ± 1.4%; 54 ± 7.8% and 56 ± 9.0%, respectively. Intradermal injection of capsaicin into the rat left vibrissa induced nociceptive behavior that was blocked by pre-injection with either SB-366791 (3 nmol/site i.d., 83.3 ± 7.2% inhibition) or PnTx3-5 (100 fmol/site, 89 ± 8.4% inhibition). We conclude that both native and recombinant PnTx3-5 are potent TRPV1 receptor antagonists with antinociceptive action on pain behavior evoked by capsaicin.