DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Item
    In vitro interaction of polyethylene glycol‐block‐poly (D,L‐lactide) nanocapsule devices with host cardiomyoblasts and trypanosoma cruzi‐infective forms.
    (2022) Siqueira, Raoni Pais; Milagre, Matheus Marques; Oliveira, Maria Alice de; Branquinho, Renata Tupinambá; Torchelsen, Fernanda Karoline Vieira da Silva; Lana, Marta de; Machado, Marina Guimarães Carvalho; Andrade, Margareth Spangler; Bahia, Maria Terezinha; Mosqueira, Vanessa Carla Furtado
    Chagas disease, caused by the protozoan Trypanosoma cruzi, is an important public health problem in Latin America. Nanoencapsulation of anti-T. cruzi drugs has signifcantly improved their efcacy and reduced cardiotoxicity. Thus, we investigated the in vitro interaction of polyethylene glycol-block-poly(D,L-lactide) nanocapsules (PEG-PLA) with trypomas- tigotes and with intracellular amastigotes of the Y strain in cardiomyoblasts, which are the infective forms of T. cruzi, using fuorescence and confocal microscopy. Fluorescently labeled nanocapsules (NCs) were internalized by non-infected H9c2 cells toward the perinuclear region. The NCs did not induce signifcant cytotoxicity in the H9c2 cells, even at the highest concentrations and interacted equally with infected and non-infected cells. In infected cardiomyocytes, NCs were distrib- uted in the cytoplasm and located near intracellular amastigote forms. PEG-PLA NCs and trypomastigote form interactions also occurred. Altogether, this study contributes to the development of engineered polymeric nanocarriers as a platform to encapsulate drugs and to improve their uptake by diferent intra- and extracellular forms of T. cruzi, paving the way to fnd new therapeutic strategies to fght the causative agent of Chagas disease.