DEFAR - Departamento de Farmácia
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530
Navegar
1 resultados
Resultados da Pesquisa
Item Possible involvement of a phosphatidylinositol-type signaling pathway in glucose-induced activation of plasma membrane ATPase and cellular proton in the yeast Sacchamyces cerevisiae.(1994) Brandão, Rogélio Lopes; Rocha, Neuza Maria de Magalhaes; Alijo, Rafael; Ramos, José; Thevelein, Johan MariaAddition of glucose to cells of the yeast Saccharomyces cerevisiae causes rapid activation of plasma membrane H+-ATPase and a stimulation of cellular H ÷ extrusion. We show that addition of diacylglycerol and other activators of protein kinase C to intact cells also activates the H+-ATPase and causes at the same time a stimulation of H ÷ extrusion from the cells. Both effects are reversed by addition of staurosporine, a protein kinase C inhibitor. Addition of staurosporine or calmidazolium, an inhibitor of Ca2+/calmodulin-dependent protein kinases, separately, causes a partial inhibition of glucose-induced H+-ATPase activation and stimulation of cellular H + extrusion; together they cause a more potent inhibition. Addition of neomycin, which complexes with phosphatidylinositol 4,5-bisphosphate, or addition of compound 48/80, a phospholipase C inhibitor, also causes near complete inhibition. Diacylglycerol and other protein kinase C activators had no effect on the activity of the K+-uptake system and the activity of trehalase and glucose-induced activation of the K+-uptake system and trehalase was not inhibited by neomycin, supporting the specificity of the effects observed on the H+-ATPase. The results support a model in which glucose-induced activation of H+-ATPase is mediated by a phosphatidylinositol-type signaling pathway triggering phosphorylation of the enzyme both by protein kinase C and one or more Ca2+/calmodulin-dependent protein kinases.