PPGCC - Programa de Pós-graduação em Ciência da Computação

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/596

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Detecção de fraudes financeiras em contas digitais : explorando abordagens hierárquicas e técnicas de aprendizado profundo.
    (2023) Souza, Andressa Oliveira; Luz, Eduardo José da Silva; Moreira, Gladston Juliano Prates; Luz, Eduardo José da Silva; Moreira, Gladston Juliano Prates; Lima, Helen de Cássia Sousa da Costa; Silva, Rodrigo César Pedrosa; Oliveira, Samuel Evangelista Lima de
    Nos últimos anos, houve um aumento na oferta de serviços financeiros por meio de aplicativos e internet banking, mas isso também levou a um aumento de contas digitais fraudulentas. Em problemas de detecção de fraudes financeiras, é comum encontrar um desbalanceamento significativo entre amostras não fraudulentas e fraudulentas, dificultando sua identificação. Dessa forma, este trabalho aborda a detecção dessas contas, utilizando métodos de sobreamostragem e classificação hierárquica para lidar com o desbalanceamento das classes. Também é investigado se o uso de deep learning com dados matriciais pode superar os classificadores tradicionais Random Forest e XGBoost. Os dados foram fornecidos pela Efí S.A. e incluem 45.209 contas organizadas de forma hierárquica. As contas são categorizadas em primeiro nível como Fraude ou Não Fraude, e no segundo nível, as não fraudes são divididas em quatro classes (A, B, C e D), enquanto as fraudes são divididas em duas (E e F). O problema foi abordado como classificação binária e multiclasse. A análise abrangente revelou que o uso dos métodos de sobreamostragem SMOTE e Borderline SMOTE melhorou as métricas de Sensibilidade e F-score para as classes fraudulentas nos classificadores tradicionais, na classificação binária e na multiclasse. A abordagem hierárquica destacou-se nas métricas de Precisão e F-score para as classes E e F, enquanto a abordagem plana apresentou o melhor desempenho em Sensibilidade para essas classes. O uso de deep learning com dados matriciais superou os classificadores tradicionais apenas na métrica de Sensibilidade na classificação binária.