PPGCC - Programa de Pós-graduação em Ciência da Computação

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/596

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Conflict graphs in mixed-integer linear programming : preprocessing, heuristics and cutting planes.
    (2020) Brito, Samuel Souza; Santos, Haroldo Gambini; Santos, Haroldo Gambini; Fonseca, George Henrique Godim da; Mateus, Geraldo Robson; Aragão, Marcus Vinicius Soledade Poggi de; Toffolo, Túlio Ângelo Machado
    This thesis addresses the development of con ict graph-based algorithms for MixedInteger Linear Programming, including: (i) an e cient infrastructure for the construction and manipulation of con ict graphs; (ii) a preprocessing routine based on a clique strengthening scheme that can both reduce the number of constraints and produce stronger formulations; (iii) a clique cut separator capable of obtaining dual bounds at the root node LP relaxation that are 19.65% stronger than those provided by the equivalent cut generator of a state-of-the-art commercial solver, 3.62 times better than those attained by the clique cut separator of the GLPK solver and 4.22 times stronger than the dual bounds obtained by the clique separation routine of the COIN-OR Cut Generation Library; (iv) an odd-cycle cut separator with a new lifting module to produce valid odd-wheel inequalities; (v) two diving heuristics capable of generating integer feasible solutions in restricted execution times. Additionally, we generated a new version of the COIN-OR Branch-and-Cut (CBC) solver by including our con ict graph infrastructure, preprocessing routine and cut separators. The average gap closed by this new version of CBC was up to four times better than its previous version. Moreover, the number of mixed-integer programs solved by CBC in a time limit of three hours was increased by 23.53%.
  • Item
    Grafo de conflitos : construção e aplicações em problemas de programação inteira.
    (2015) Brito, Samuel Souza; Santos, Haroldo Gambini
    Este trabalho explora a informação estrutural de relações entre variáveis binárias em problemas de Programação Inteira por meio de grafos de conflitos. Tal estrutura possui um papel fundamental na construção de métodos exatos e heurísticos de resolução. Nesse sentido, o presente trabalho propõe e desenvolve técnicas baseadas na análise de grafos de conflitos para obtenção de soluções factíveis e limites duais fortes para problemas de Programação Inteira. Foram desenvolvidas otimizações nas técnicas de detecção de conflitos, que permitiram a construção rápida de grafos densos mediante a análise de restrições. A obtenção de limites duais fortes para programas inteiros é realizada por uma rotina desenvolvida para geração de desigualdades válidas. Essa rotina é responsável por gerar cortes de clique e ciclo ímpar e inseri-los na relaxação linear, reforçando os limites duais e acelerando a convergência para a solução ótima. Para obter soluções factíveis para programas binários foi desenvolvido um resolvedor heurístico, que utiliza as relações lógicas entre variáveis para construir uma solução inicial e melhorá-la por meio de uma busca local. A busca local executa uma cadeia de movimentos a cada iteração, que permite corrigir a infactibilidade de uma solução ou, até mesmo, saltar de uma solução factível para outra. Considerando a produção de limites duais fortes, os resultados obtidos pela rotina de geração de desigualdades desenvolvida mostraram uma convergência mais rápida em relação à rotina de separação de cortes do resolvedor COINOR Branch-and-Cut. Em relação à obtenção de factibilidade, o resolvedor heurístico foi apto a gerar soluções para um número significativo de problemas de Programação Inteira Binária, considerando tempos restritos de execução.