EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Computational procedures for nonlinear analysis of frames with semi-rigid connections.
    (2005) Pinheiro, Leonardo; Silveira, Ricardo Azoubel da Mota
    This work discusses numerical and computational strategies for nonlinear analysis of frames with semi-rigid connections. Initially, the formation of the nonlinear problem is analyzed, followed by the necessary computational approaching for its solution. After that, the matricial formulations and the mathematical modeling of flexible connections, as well as the insertion of the nonlinear process, are presented. Moreover, the necessary procedures for characterization of semi-rigid beam-column elements, the modified stiffness matrix, the internal forces vector and the updating of the connection stiffness along the incremental-iterative process are approached and illustrated through the text. In order to verify the success of the implementations and the considered algorithms, the results for some types of frames considering semi-rigid joints are compared with those supplied by literature. Some considerations and conclusions about the computational implementations and results obtained are presented at the end of this work.
  • Item
    Nonlinear dynamic behavior and instability of slender frames with semi-rigid connections.
    (2010) Galvão, Alexandre da Silva; Silva, Andréa Regina Dias da; Silveira, Ricardo Azoubel da Mota; Gonçalves, Paulo Batista
    The free and forced nonlinear vibrations of slender frames with semi-rigid connections are studied in this work. Special attention is given to the influence of static pre-load on the natural frequencies and mode shapes, nonlinear frequency–amplitude relations, and resonance curves. An efficient nonlinear finite element program for buckling and vibration analysis of slender elastic frames with semi-rigid connections is developed. The equilibrium paths are obtained by continuation techniques, in combination with the Newton-Raphson method. The ordinary differential equations of motion of the discretized frame are solved by the Newmark implicit numerical integration method using adaptive time-step strategies. Three structural systems with important practical applications are analyzed: an L-frame, a shallow arch, and a pitched-roof frame. The results highlight the importance of the static pre-load and the stiffness of the semi-rigid connections on the buckling and vibration characteristics of these structures.