EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
2 resultados
Resultados da Pesquisa
Item An efficient inelastic approach using SCM/RPHM coupling to study reinforced concrete beams, columns and frames under fire conditions.(2020) Pires, Dalilah; Barros, Rafael Cesário; Silveira, Ricardo Azoubel da Mota; Lemes, Igor José Mendes; Rocha, Paulo Anderson SantanaThis work has as its main objective the study of the behavior of reinforced concrete beams, columns and structural frames in a fire situation. To do so an efficient numerical formulation was developed, implemented and evaluated. When exposed to high temperatures, the characteristics of the materials deteriorate, resulting in a considerable loss of strength and stiffness of the structure. The CS-ASA (Computational System for Advanced Structural Analysis) was used to achieve the objective. This computer system was expanded for advanced analysis of structures in fire conditions, taking advantage of the existing features and adding new ones. Two new computational modules were created: CS-ASA/FA (Fire Analysis) and CS-ASA/FSA (Structural Fire Analysis). The first one was used to determine the temperature field in the structural elements’ cross-section through thermal analysis by the Finite Element Method (FEM) in permanent and transient regimes. The second was created to perform the second-order inelastic analysis of structures under fire using the FEM formulations based on the Refined Plastic Hinge Method (RPHM) and the Strain Compatibility Method (SCM) coupling, which can be considered a unique feature of the present study. The use of SCM allows for a more realistic analysis against the design codes prescriptions. Consequently, even under high temperatures, SCM is used for evaluation of both bearing capacity and stiffness parameters. The results of the nonlinear analysis in a fire situation for eight structural elements and systems with different geometries, boundary, heating and loading conditions are in good agreement with the numerical and experimental results found in the literature.Item Advanced inelastic analysis of steel structures at elevated temperatures by SCM/RPHM coupling.(2018) Barros, Rafael Cesário; Maximiano, Dalilah Pires; Silveira, Ricardo Azoubel da Mota; Lemes, Igor José Mendes; Rocha, Paulo Anderson SantanaWhen exposed to high temperatures, the structural members and frames have their bearing capacity compromised because the physical characteristics and material resistance used in the structures deteriorate during exposure to fire, resulting in a considerable loss of strength and stiffness. In this context, the present work carries out a whole thermomechanical analysis of steel members and frames using the Finite Element Method (FEM) inelastic formulation based on the Refined Plastic Hinge Method (RPHM) coupled with the Strain Compatibility Method (SCM). The use of SCM allows for a more realistic analysis against the design codes prescriptions. So even under high temperatures, SCM is used for both evaluation of bearing capacity and stiffness parameters. To do this, the steel behavior used in the structure numerical modeling must be described in a consistent manner through its constitutive relationship. A comparison of the results obtained here with the numerical and experimental results available in the literature suggest the effectiveness of coupling SCM/RPHM and that such a methodology can provide reliable analyses of steel members and frames subjected to high temperatures.