EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 9 de 9
  • Item
    Aprendizado de máquina aplicado à moagem de minério de ferro.
    (2023) Silva, Daniel Henrique Cordeiro; Lima, Hernani Mota de; Alves, Vladmir Kronemberger; Alves, Vladmir Kronemberger; Souza, Ernandes Sávio de; Bergerman, Maurício Guimarães
    O aprendizado de máquina, juntamente com outras novas tecnologias, desempenha um papel significativo no advento da Indústria 4.0, impulsionando a otimização de vários processos em diversos setores, incluindo o Tratamento de Minérios. Com a crescente disponibilidade de dados de chão de fábrica, algoritmos avançados podem aprimorar a tomada de decisões e aumentar a eficiência, reduzindo custos e aumentando a lucratividade. No beneficiamento de minério, algumas das oportunidades a serem exploradas estão atreladas à utilização das ferramentas de Big Data, Machine Learning e Inteligência Artificial, e podem trazer benefícios na manutenção preditiva, previsão de teores químicos ou de propriedades físicas, bem como controle e otimização de processos e redução do consumo de energia. Especificamente para processos como a moagem, ferramentas de aprendizado de máquina tendem a ter seus ganhos potencializados se combinados com modelos matemáticos consolidados – sejam eles empíricos ou fenomenológicos, advindos do conhecimento do processo. Este trabalho explora a combinação de aprendizado de máquina com modelos de processo já estabelecidos para prever a granulometria do produto em uma planta de moagem de minério de ferro, que é o principal parâmetro de qualidade a ser monitorado. O objetivo é investigar como essas equações podem contribuir para a um desempenho melhor dos modelos preditivos, de forma a otimizar a tomada de decisão operacional na unidade. Por fim, as métricas observadas indicam boa acurácia para os modelos desenvolvidos com a inclusão de equações de processo consagradas, com grande potencial de utilização em operação. Reafirma-se, então, que a ciência de dados e os modelos preditivos são ferramentas de significante potencial valor para otimizar e melhorar a eficiência e a qualidade do processamento mineral e das operações de moagem. Eles permitem que os operadores tomem decisões assertivas e medidas proativas para a melhoria nas operações.
  • Item
    Especificação de rochas ornamentais utilizadas na construção civil aplicando técnicas de estatística multivariada e aprendizado de máquina.
    (2023) Zagôto, Juliano Tessinari; Lana, Milene Sabino; Pereira, Tiago Martins; Lana, Milene Sabino; Santos, Allan Erlikhman Medeiros; Santos, Tatiana Barreto dos; Frasca, Maria Heloisa Barros de Oliveira; Klen, André Monteiro
    O Brasil é mundialmente reconhecido como potência produtora e exportadora de rochas ornamentais. Com grande beleza estética e qualidades físico-mecânicas inquestionáveis, as rochas ornamentais brasileiras estão espalhadas por grandes obras no mundo. Nessa perspectiva, este trabalho visa estabelecer um índice de qualidade e um critério de seleção de rochas ornamentais para revestimentos aplicados na construção civil. Para isso foi elaborado um banco de dados dos resultados dos ensaios de caracterização tecnológica de 285 amostras de rochas naturais, adotados como variáveis. Esse estudo propôs um índice de qualidade para as rochas ornamentais utilizando-se dos valores dos parâmetros tecnológicos gerais de referência, atribuindo pesos a eles e conforme o ambiente no qual a rocha é aplicado. Os ambientes foram definidos como A (piso interno seco de baixo tráfego), B (parede interna seca), C (parede interna molhada), D (parede externa), E (bancada interna seca), F (bancada interna molhada), G (bancada externa) e H (outras aplicações). Com o auxílio do software estatístico livre R foram utilizados métodos de estatística multivariada e de aprendizado de máquina. Da análise de componentes principais, pudemos extrair que as três primeiras componentes explicam aproximadamente 51% do problema. Da análise de agrupamentos foram gerados 5 (cinco) grupos classificados como G1 (Grupo dos Quartzitos), G2 (Grupo dos Granitos), G3 (Grupo majoritariamente formado por Granitos), G4 (Grupo majoritariamente formado por Granitos ricos em granada ou grupo dos Gnaisses) e G5 (Grupo dos Mármores). A partir daí, foram realizadas as estatísticas descritivas intra e inter grupos. De posse dos grupos formados, foi treinada uma árvore de decisão capaz de indicar uma rocha para um determinado ambiente com altíssimo grau de acerto. A acurácia da árvore de decisão foi de 0,96 e o Índice Kappa 0,95. O trabalho apresenta uma nova abordagem para indicar assertivamente uma rocha natural para um determinado ambiente, diminuindo a subjetividade por meio de um sistema de classificação. Apesar da complexidade matemática das técnicas adotadas, os resultados gerados são de fácil interpretação e simples visualização.
  • Item
    Machine learning applied to the prediction of rockfall slope probability.
    (2022) Silveira, Larissa Regina Costa; Lana, Milene Sabino; Santos, Tatiana Barreto dos
    The objective of this work is to propose a predictive model of rockfall slope probability in rock slopes using the KNearest Neighbors (KNN) method. A dataset composed by 220 rock slopes was used, whose variables are related to the presence of water, characteristics of the rock mass, degree of overhang, among others. For each slope of the dataset, rockfall probability (high, medium, or low) is known and determined by cluster analysis. The number of the nearest neighbors (k) ranged from 1 to 20. The obtained average accuracy of the tested predictive models was equal to 78.4%. The models produced satisfactory results in the prediction of the rockfall probability, since the area under the ROC curve was equal to 0.80. The best model was selected based on the k value with the highest accuracy and the highest area under the ROC curve. The selected model had a k value equal to 7.
  • Item
    Previsão da diluição em realces subterrâneos por meio de técnicas de aprendizado de máquina.
    (2023) Rodrigues, Caio Oliveira; Santos, Tatiana Barreto dos; Santos, Tatiana Barreto dos; Figueiredo, Rodrigo Peluci de; Silveira, Larissa Regina Costa
    Uma das principais metodologias empíricas para avaliar a estabilidade de realces de minas subterrâneas e estimar sua diluição é o Gráfico de Estabilidade de Realces Modificado, proposto por Potvin et al. (1988), que relaciona características do maciço rochoso e a geometria do realce. Seu uso permite estimar a condição de estabilidade da escavação, utilizando um gráfico construído a partir da análise da diluição de 255 realces. Todavia, por se tratar de um método empírico, várias subjetividades estão associadas com o processo de avaliação, e a aplicação da técnica possui restrições de uso, uma vez que não consideram os ambientes geomecânicos das minas subterrâneas brasileiras. O presente trabalho propõe modelos de predição da diluição em realces por meio da aplicação de algoritmo de florestas aleatórias em um banco de dados de uma mina subterrânea de ouro brasileira contendo 26 variáveis de 70 realces de três diferentes mineralizações. A fim de investigar as variáveis que contém maior correlação com a diluição foi utilizado o método de árvores de decisão, que apontou seis variáveis principais deste banco de dados na previsão de diluição, utilizadas para geração dos modelos de florestas aleatórias em três etapas. Primeiramente, foi proposto um modelo validado pelo método da ressubstituição, a ser comparado com os modelos propostos por Costa (2017) a partir do mesmo banco de dados, que revelou superioridade das florestas aleatórias na previsão de diluição em detrimento dos modelos de regressão linear múltipla proposto pelo autor, obtendo-se R2 igual a 0.9161. Em seguida o modelo de florestas aleatórias foi validado por divisão de amostras treino/teste, que obteve valor de R2 igual a 0.3060 no melhor cenário. Por fim, visando aprimorar o modelo, o banco de dados foi dividido em três, cada um referente a um dos corpos mineralizados, e novos modelos foram gerados para cada banco de dados. Esta análise indicou evolução nos valores de acurácia dos modelos, com R2 igual a 0.5465, 0.5295 e 0.4525, contudo, com grande variabilidade das métricas de validação. A importância das variáveis também foi observada nestas últimas análises por florestas aleatórias, indicando grande coerência com os resultados obtidos por meio das árvores de decisão. O estudo foi capaz de definir as principais variáveis do banco de dados na influência de diluição em realces, e propõe modelos de predição de diluição práticos, de fácil utilização e com menos subjetividades que os métodos empíricos, sendo uma excelente ferramenta para auxiliar engenheiros geotécnicos na compreensão e estimativa da diluição operacional.
  • Item
    Proposta de modelos de predição da resistência não drenada de rejeitos de bauxita.
    (2023) Pinto, Guilherme Henrique da Silva; Santos, Tatiana Barreto dos; Santos, Tatiana Barreto dos; Candido, Eduardo Souza; Santos, Allan Erlikhman Medeiros
    A correta determinação de parâmetros de resistência de rejeitos é essencial na engenharia geotécnica. Casos recentes de rupturas de barragens de rejeito de mineração, reforçam a necessidade de um melhor entendimento do comportamento mecânico de rejeitos. Para a determinação da resistência não drenada desses materiais, comumente são utilizados ensaios de campo como o ensaio de piezocone (CPTu) e palheta (Vane). Apesar dos ensaios de campo fornecerem uma medida in situ das propriedades do solo/rejeito, as metodologias para determinação da resistência não drenada por meio destes ensaios advêm de correlações empíricas e/ou analíticas que foram propostas e validadas em solos naturais. Visando contornar problemas de predição semelhantes ao tratado neste trabalho, vários autores têm aplicado técnicas da ciência de dados (estatística multivariada, aprendizado de máquina e inteligência artificial) como K-ésimo Vizinho mais Próximo, Florestas Aleatórias, Regressão Linear Múltipla, Máquina Vetor Suporte, dentre outras. Sendo assim, o presente trabalho tem por objetivo aplicar tais técnicas para a obtenção de modelos capazes de prever a resistência não drenada de pico de um rejeito de bauxita por meio de ensaios de campo (piezocone e palheta) e laboratório (teor de umidade). As variáveis influentes na obtenção da resistência não drenada também foram avaliadas por meio de diferentes combinações nos input das variáveis nos modelos. Foi aplicado também a técnica de validação cruzada k-fold para avaliar a acurácia e capacidade de generalização dos modelos elaborados. Além disso, é apresentada proposta metodológica para caracterização do comportamento não drenado com base nos dados dos ensaios de CPTu e dissipação de poropressão. Os modelos de ciência de dados obtidos foram comparados com a metodologia baseada fatores do cone Nkt, Nu e Nke calibrados com o Vane para a determinação da resistência não drenada. Dentre os resultados obtidos, as técnicas de ciência de dados apresentaram R2 superiores à 0,90, mostrando também menor dispersão dos resultados preditos se comparadas à metodologia baseada nos fatores supracitados. Com base no estudo das variáveis influentes, foi observado que as poropressões são as variáveis que mais influenciam na predição da resistência não drenada. Além disso, por meio do teste estatístico t-student foi comprovado que os modelos de ciência de dados têm desempenho superior à metodologia clássica de melhor desempenho (baseado nas poropressões), partindo das mesmas variáveis independentes.
  • Item
    Proposta de sensores virtuais baseados em aprendizado de máquina para estimativa de parametros de qualidade na etapa de pelotamento de minério de ferro.
    (2021) Dias, Fabricio Bertholi; Pessin, Gustavo; Pessin, Gustavo; Euzebio, Thiago Antonio Melo; Coelho, Bruno Nazário; Souza, Jefferson Rodrigo de
    O processo industrial de pelotização de minério de ferro foi desenvolvido objetivando-se o beneficiamento e aproveitamento comercial dos finos de minério. O pelotamento é a etapa deste processo responsável pela formação das pelotas, sendo influenciado por diversas variáveis, com reflexos diretos sobre a qualidade do produto. Logo, é importante que certas características físicas, desejadas para as pelotas, sejam continuamente monitoradas durante o processo produtivo. Atualmente o processo de garantia da qualidade é feito através de ensaios em laboratórios, atividade com alta latência de resposta. Dada a necessidade de aumento de eficiência deste processo e o respectivo impacto em toda a cadeia produtiva, este trabalho propõe a aplicação de um sensor virtual para estimar parâmetros de qualidade na etapa de pelotamento em uma usina de pelotização de minério de ferro. Foram comparadas 3 técnicas de aprendizado de máquinas: Redes Neurais Artificias, Random Forests e KNN – K Nearest Neighbors. Foi proposto um modelo de regressão baseado na coletânea nos melhores modelos individuais comparados. A identificação das variáveis que mais influenciam nos parâmetros de qualidade de pelotas cruas de minério de ferro é descrita, fundamentando-se na teoria da metalurgia do processo de pelotização. As variáveis de processo candidatas (features / targets) ao modelo foram tratadas, formando a base de dados para a geração do modelo de predição. Os modelos dos sensores virtuais foram validados com sucesso, obtendo-se R2 de 0,944 e RMSE de 0,075 para o modelo de coletânea, comprovando a importância de variáveis, tais como dosagens de aglomerantes, taxas de dosagem e rotação dos discos de pelotamento, volumes de produção e retorno. A validação dos modelos evidencia seu potencial para aplicação em um ambiente real, e abre espaço para continuidade de estudos futuros.
  • Item
    Monitoramento da qualidade de SINTER FEED através de dados espectrais associados a aprendizado de máquina – estudo de caso : Mina de Carajás Serra Sul (S11D).
    (2021) Silva, Ana Cristina Pinto; Pabón, Rosa Elvira Correa; Pessin, Gustavo; Pabón, Rosa Elvira Correa; Souza, Jefferson Rodrigo de; Coimbra, Keyla Thayrinne Oliveira; Cota, Luciano Perdigão
    Essa pesquisa compreende na geração de bibliotecas espectrais e caracterização espectroscópica de sínter feed, visando contribuir no aprimoramento dos métodos tradicionais utilizados na indústria mineral, para determinação de percentual de ferro e contaminantes na Mina de Carajás Serra Sul, mais conhecida como S11D. Para tanto, foram realizadas em ambiente de laboratório, leituras espectrais de amostras de sínter feed de produto final e amostras preparadas, pulverizadas e secadas. As bibliotecas espectrais e sua caracterização espectroscópica foram realizadas no intervalo de 350 – 2500 nm. A biblioteca espectral gerada será integrada a dados geoquímicos como fluorescência de raio X, com o intuito de construir modelos empíricos que permitam determinar o percentual de ferro e identificar contaminantes nas amostras. Os dados produzidos deverão gerar informações que permitam: (i) identificar as bandas espectrais na assinatura do sínter feed associadas ao conteúdo de ferro; (ii) identificar as bandas espectrais na assinatura do sínter feed referentes aos contaminantes: (iii) gerar modelos estatísticos que permitam estimar o percentual de ferro nas amostras de sínter feed; (iv) avaliar o uso de métodos de aprendizado de máquinas para estimar o teor de ferro em amostras de minério de ferro, com base em bibliotecas espectrais; (iv) espera-se que na medida em que os objetivos do projeto sejam atingidos, avaliar a possibilidade de uso dos critérios viii derivados em laboratório para prever situações reais nas atividades de mineração e gerar uma nova metodologia que permita determinar o percentual de ferro e identificação de contaminantes de maneira precisa e oportuna, para a tomada de decisões e otimização nos processos produtivos.
  • Item
    Aprendizado de máquina aplicado em previsão de curto prazo de valores de indicadores de nível de água.
    (2021) Kümmel, Luiz Frederico de Freitas; Pessin, Gustavo; Torres, Vidal Félix Navarro; Sabino, Jodelson Aguilar; Pessin, Gustavo; Sabino, Jodelson Aguilar; Girao Sotomayor, Juan Manuel; Hidaka, Renato
    A estabilidade e solidez de barragens de rejeito para resíduos de atividades industriais de mineração é de importância primordial para a segurança da sociedade e meio ambiente localizado a sua jusante. Para assegurar as essenciais exigências de segurança e exposição ao risco das barragens ao longo da sua vida útil, devem ser implementadas ações mitigatórias de prevenção e controle dessas condições, nesse intuito esse trabalho visa aplicar métodos de Machine Learning, para prever o comportamento dos indicadores de nível de água associados a carta de risco. Os algoritmos de machine learning mostraram elevadas taxas de acerto para predição, sendo que a combinação de métodos de classificação e regressão permitiu aumentar ainda mais a qualidade de resposta do sistema proposto.
  • Item
    Análise de risco geotécnico em taludes rochosos de mina com uso de técnicas estatísticas multivariadas e de aprendizado de máquina.
    (2019) Santos, Tatiana Barreto dos; Lana, Milene Sabino; Klen, André Monteiro; Canbulat, Ismet; Lana, Milene Sabino; Carneiro, Cláudia Aparecida Nonato Gomes; Charbel, Paulo André; Pereira, Thiago Martins; Destro, Elton
    O controle do perigo e risco de rupturas em taludes rochosos é uma preocupação em taludes urbanos, rodoviários e de minas. O risco geotécnico é definido matematicamente pela probabilidade da ocorrência da ruptura do talude vezes as consequências adversas desta. É de conhecimento da comunidade geotécnica que a probabilidade de ruptura em taludes rochosos está relacionada às características da rocha intacta e das descontinuidades presentes nos maciços rochosos. Quanto às consequências associadas às rupturas em empreendimentos mineiros pode-se citar: as perdas econômicas e humanas. Os sistemas de análise de risco utilizados normalmente são essencialmente qualitativos e carecem, muitas vezes, de embasamento estatístico. Este trabalho propõe metodologias de análise de perigo e risco baseado no uso de técnicas de estatística multivariada e de aprendizado de máquina. Sistemas de análise de perigo e risco foram propostos. O sistema de análise de perigo foi construído utilizando análise de componentes principais e análise discriminante, com taxa de erro igual a 11,36%. Por fim um gráfico de análise de perigo foi gerado utilizando a distância de Mahalanobis. O sistema de análise de risco foi construído utilizando regressão logística e árvores de classificação. A técnica de regressão logística foi utilizada para gerar uma função de predição capaz de se determinar a probabilidade de que um talude de mina seja estável ou não. A função apresentou taxa de erro igual a 7,95%. A técnica de árvores de decisão foi utilizada para gerar um sistema em que se determina os níveis de consequências adversas da ruptura. A árvore gerada apresentou taxa de erro igual a 18,18%. Por fim foi proposta uma matriz de risco. O sistemas de análise de perigo e risco propostos podem igualmente serem aplicados em taludes rochosos de mina de qualquer natureza. Para obtenção dos sistemas de análise de perigo e risco foi utilizado um banco de dados de 88 taludes de mina localizados em diversos países do mundo. Ambos os sistemas propostos são fáceis de serem utilizados e aplicados de forma expedita em empreendimentos mineiros de grande a pequeno porte.