EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
39 resultados
Resultados da Pesquisa
Item Assessment of the molecular structure of an intermediate member of the triplite-zwieselite mineral series : a raman and infrared study.(2014) Frost, Ray Leslie; Xi, Yunfei; López, Andrés; Moreira, Viviane Amaral; Cipriano, Ricardo Augusto Scholz; Lima, Rosa Malena Fernandes; Gandini, Antônio LucianoThe mineral series triplite-zwieselite with theoretical formula (Mn2þ)2(PO4)(F)-(Fe2þ)2(PO4)(F) from the El Criolo granitic pegmatite, located in the Eastern Pampean Ranges of Cordoba Province, was studied using electron microprobe, thermogravimetry, and Raman and infrared spec- troscopy. The analysis of the mineral provided a formula of (Fe1.00, Mn0.85, Ca0.08, Mg0.06)P2.00(PO4)1.00(F0.80, OH0.20)P1.00. An intense Raman band at 981cm1 with a shoulder at 977cm1 is assigned to the PO3 4 n1 symmetric stretching mode. The observation of two bands for the phosphate symmetric stretching mode offers support for the concept that the phosphate units in the structure of triplite-zwieselite are not equivalent. Low-intensity Raman bands at 1012, 1036, 1071, 1087, and 1127 cm1 are assigned to the PO3 4 n3 antisymmetric stretching modes. A set of Raman bands at 572, 604, 639, and 684 cm1 are attributed to the PO3 4 n4 out-of-plane bending modes. A single intense Raman band is found at 3508 cm1 and is assigned to the stretching vibration of hydroxyl units. Infrared bands are observed at 3018, 3125, and 3358 cm1 and are attributed to water stretching vibrations. Supplemental materials are available for this article. Go to the publisher’s online edition of Spectroscopy Letters to view the supplemental file.Item Raman and infrared spectroscopic study of turquoise minerals.(2015) Čejka, Jiři; Sejkora, Jiři; Macek, Ivo; Malíková, Radana; Wang, Lina; Cipriano, Ricardo Augusto Scholz; Xi, Yunfei; Frost, Ray LeslieRaman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8_4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O–H…O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2_ units were observed.Item A vibrational spectroscopic study of the copper bearing silicate mineral luddenite.(2015) Frost, Ray Leslie; López, Andrés; Xi, Yunfei; Cipriano, Ricardo Augusto ScholzThe molecular structure of the copper–lead silicate mineral luddenite has been analysed using vibrational spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman band at 978 cm 1 is assigned to the m1 (A1g) symmetric stretching vibration of Si5O14 units. Raman bands at 1122, 1148 and 1160 cm 1 are attributed to the m3 SiO4 antisymmetric stretching vibrations. The bands in the 678–799 cm 1 are assigned to OSiO bending modes of the (SiO3)n chains. Raman bands at 3317 and 3329 cm 1 are attributed to water stretching bands. Bands at 3595 and 3629 cm 1 are associated with the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of luddenite.Item A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite Na3Mn(PO4)(CO3).(2015) Frost, Ray Leslie; López, Andrés; Cipriano, Ricardo Augusto Scholz; Belotti, Fernanda Maria; Xi, YunfeiSidorenkite is a very rare low-temperature hydrothermal mineral, formed very late in the crystallization of hyperagpaitic pegmatites in a differentiated alkalic massif (Mt. Alluaiv, Kola Peninsula, Russia). Sidorenkite Na3Mn(PO4)(CO3) is a phosphate–carbonate of sodium and manganese. Such a formula with two oxyanions lends itself to vibrational spectroscopy. The sharp Raman band at 959 cm 1 and 1012 cm 1 are assigned to the PO43 stretching modes, whilst the Raman bands at 1044 cm 1 and 1074 cm 1 are attributed to the CO32 stretching modes. It is noted that no Raman bands at around 800 cm 1 for sidorenkite were observed. The infrared spectrum of sidorenkite shows a quite intense band at 868 cm 1 with other resolved component bands at 850 and 862 cm 1. These bands are ascribed to the CO32 out-of-plane bend (m2) bending mode. The series of Raman bands at 622, 635, 645 and 704 cm 1 are assigned to the m4 phosphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the carbonate anion from D3h or even C2v.Item A vibrational spectroscopic study of the silicate mineral ardennite-(As).(2014) Frost, Ray Leslie; López, Andrés; Xi, Yunfei; Cipriano, Ricardo Augusto Scholz; Gandini, Antônio LucianoWe have used a combination of scanning electron microscopy with EDX and vibrational spectroscopy to study the mineral ardennite-(As). The mineral ardennite-(As) of accepted formula Mn4(2+)(Al,Mg)6(Si3O10)(SiO4)2(AsO4,VO4)(OH)6 is a silicate mineral which may contain arsenate and/or vanadates anions. Because of the oxyanions present, the mineral lends itself to analysis by Raman and infrared spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by Si, Mn, Al and As. Ca and V were also observed in partial substitution for Mn and As. Raman bands at 1197, 1225, 1287 and 1394 cm(-1) are assigned to SiO stretching vibrations. The strong Raman bands at 779 and 877 cm(-1) are assigned to the AsO4(3-) antisymmetric and symmetric stretching vibrations. The Raman band at 352 cm(-1) is assigned to the ν2 symmetric bending vibration. The series of Raman bands between 414 and 471 cm(-1)are assigned to the ν4 out of plane bending modes of the AsO4(3-) units. Intense Raman bands observed at 301 and 314 cm(-1) are attributed to the MnO stretching and bending vibrations. Raman bands at 3041, 3149, 3211 and 3298 cm(-1) are attributed to the stretching vibrations of OH units. There is vibrational spectroscopic evidence for the presence of water adsorbed on the ardennite-(As) surfaces.Item Structural characterization and vibrational spectroscopy of the arsenate mineral wendwilsonite.(2014) Frost, Ray Leslie; Cipriano, Ricardo Augusto Scholz; López, Andrés; Belotti, Fernanda Maria; Xi, YunfeiIn this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2_2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2_2H2O (where B may be Co, Fe2+, Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)3_ stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)3_ clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm_1 are assigned to m4 bending modes. Multiple bands in the 350–300 cm_1 region assigned to m2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm_1 are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patternsb with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.Item Vibrational spectroscopic study of the uranyl selenite mineral derriksite Cu4UO2(SeO3)2(OH)6-H2O.(2014) Frost, Ray Leslie; Čejka, Jiři; Cipriano, Ricardo Augusto Scholz; López, Andrés; Theiss, Frederick L.; Xi, YunfeiRaman spectrum of the mineral derriksite Cu4UO2(SeO3)2(OH)6_H2O was studied and complemented by the infrared spectrum of this mineral. Both spectra were interpreted and partly compared with the spectra of demesmaekerite, marthozite, larisaite, haynesite and piretite. Observed Raman and infrared bands were attributed to the (UO2)2+, (SeO3)2_, (OH)_ and H2O vibrations. The presence of symmetrically distinct hydrogen bonded molecule of water of crystallization and hydrogen bonded symmetrically distinct hydroxyl ions was inferred from the spectra in the derriksite unit cell. Approximate U–O bond lengths in uranyl and O–H_ _ _O hydrogen bond lengths were calculated from the Raman and infrared spectra of derriksite.Item The molecular structure of the vanadate mineral mottramite [PbCu(VO4)(OH)] from Tsumeb, Namibia - a vibrational spectroscopic study.(2014) Frost, Ray Leslie; Xi, Yunfei; López, Andrés; Corrêa, Lívia; Cipriano, Ricardo Augusto ScholzWe have studied a mineral sample of mottramite PbCu(VO4)(OH) from Tsumeb, Namibia using a combination of scanning electron microscopy with EDX, Raman and infrared spectroscopy. Chemical analysis shows principally the elements V, Pb and Cu. Ca occurs as partial substitution of Pb as well as P and As in substitution to V. Minor amounts of Si and Cr were also observed. The Raman band of mottramite at 829 cm_1, is assigned to the m1 symmetric (VO_4 ) stretching mode. The complexity of the spectra is attributed to the chemical composition of the Tsumeb mottramite. The m3 antisymmetric vibrational mode of mottramite is observed as very low intensity bands at 716 and 747 cm_1. The series of Raman bands at 411, 439, 451 cm_1 and probably also the band at 500 cm_1 are assigned to the (VO_4 ) m2 bending mode. The series of Raman bands at 293, 333 and 366 cm_1 are attributed to the (VO_ 4 ) m4 bending modes. The m3, m3 and m4 regions are complex for both minerals and this is attributed to symmetry reduction of the vanadate unit from Td to Cs.Item Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite - and in comparison with selected rare earth carbonates.(2013) Frost, Ray Leslie; López, Andrés; Cipriano, Ricardo Augusto Scholz; Xi, Yunfei; Belotti, Fernanda MariaRaman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm^-1 attributed to the (CO3)^2- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of (CO3)^2- symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 1091 cm^-1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 1091 cm^-1 assigned to the m3 (CO3)^2- antisymmetric stretching mode. The observation of additional Raman bands for the m3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 1091 cm^-1 and assigned to the (CO3)^2- m2 bending modes. Raman bands are observed for huanghoite at around 627 1091 cm^-1 and are assigned to the (CO3)^2- m4 bending modes. Raman bands are observed for the carbonate m4 in phase bending modes at 722 1091 cm^-1 for bastnasite, 736 and 684 1091 cm^-1 for parisite, 714 1091 cm^-1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 1091 cm^-1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.Item Vibrational spectroscopy of the phosphate mineral kovdorskite - Mg2PO4(OH)-3H2O.(2013) Frost, Ray Leslie; López, Andrés; Xi, Yunfei; Granja, Amanda; Cipriano, Ricardo Augusto Scholz; Lima, Rosa Malena FernandesThe mineral kovdorskite Mg2PO4(OH)_3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm_1 attributed to the PO3_ 4 m1 symmetric stretching mode. Raman bands at 1057 and 1089 cm_1 are attributed to the PO3_ 4 m3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm_1 are assigned to the PO3_ 4 m2 bending modes. Raman bands at 536, 546 and 574 cm_1 are assigned to the PO3_ 4 m4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm_1 assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm_1 are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)_3H2O.