EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
4 resultados
Resultados da Pesquisa
Item SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite.(2015) Frost, Ray Leslie; López, Andrés; Cipriano, Ricardo Augusto Scholz; Theiss, Frederick L.; Romano, Antônio WilsonThe mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH) H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm 1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm 1. A very sharp band is observed at 3668 cm 1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm 1 are assigned to water stretching vibrations.Item A vibrational spectroscopic study of the silicate mineral normandite – NaCa(Mn2+,Fe2+)(Ti,Nb,Zr)Si2O7(O,F)2.(2015) Frost, Ray Leslie; López, Andrés; Theiss, Frederick L.; Cipriano, Ricardo Augusto Scholz; Romano, Antônio WilsonWe have studied the mineral normandite using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral normandite NaCa(Mn2+,Fe2+)(Ti,Nb,Zr)Si2O7(O,F)2 is a crystalline sodium calcium silicate which contains rare earth elements. Chemical analysis shows the mineral contains a range of elements including Na, Mn2+, Ca, Fe2+ and the rare earth element niobium. No Raman bands are observed above 1100 cm 1. The mineral is characterised by Raman bands observed at 724, 748, 782 and 813 cm 1. Infrared bands are broad; nevertheless bands may be resolved at 723, 860, 910, 958, 933, 1057 and 1073 cm 1. Intense Raman bands at 454, 477 and 513 cm 1 are attributed to OSiO bending modes. No Raman bands are observed in the hydroxyl stretching region, but low intensity infrared bands are observed at 3191 and 3450 cm 1. This observation brings into question the true formula of the mineral.Item A vibrational spectroscopic study of the silicate mineral pectolite – NaCa2Si3O8(OH).(2015) Frost, Ray Leslie; López, Andrés; Theiss, Frederick L.; Romano, Antônio Wilson; Cipriano, Ricardo Augusto ScholzThe mineral pectolite NaCa2Si3O8(OH) is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and in other industrial applications. Raman bands at 974 and 1026 cm 1 are assigned to the SiO stretching vibrations of linked units of Si3O8 units. Raman bands at 974 and 998 cm 1 serve to identify Si3O8 units. The broad Raman band at around 936 cm 1 is attributed to hydroxyl deformation modes. Intense Raman band at 653 cm 1 is assigned to OSiO bending vibration. Intense Raman bands in the 2700–3000 cm 1 spectral range are assigned to OH stretching vibrations of the OH units in pectolite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the silicate mineral pectolite.Item A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2.(2014) Frost, Ray Leslie; López, Andrés; Theiss, Frederick L.; Graça, Leonardo Martins; Cipriano, Ricardo Augusto ScholzThe mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm^-1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm^-1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.