EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
47 resultados
Filtros
Configurações
Resultados da Pesquisa
Item Influence of residual stress models prescribed in design codes for steel I-section behavior.(2022) Lemes, Igor José Mendes; Silva, Jéssica Lorrany e; Batelo, Everton André Pimentel; Silveira, Ricardo Azoubel da MotaNon-uniform cooling of steel cross-sections during the manufacturing process generates a state of residual stresses in the cross-section. Design codes describe the distribution of these stresses in different ways. This work aims to numerically investigate the influence of these models on the behavior of bare steel and steel-concrete composite sections by the curves: flexural stiffness-bending moment, moment-curvature and yield curves (initial and full yield). These procedures are important for the study of the simplified curves used in some methodologies of the refined plastic hinge method (RPHM) analysis. The study will use the strain compatibility method (SCM), where, if the axial strain of the cross-section point is known, the section stiffness is obtained using the tangential Young's modulus derived from the materials constitutive relationship. A fiber discretization algorithm is applied and the residual stresses are explicitly inserted into the fibers automatically. The methodology was calibrated using the moment-curvature relationship and the flexural stiffness-bending moment curve. These results were numerically stable and good convergence with literature data was obtained. In general, the residual stress model of the American standard (AISC, 2016) defines a larger elastic region within the interaction diagrams then European model (CEN, 2005). The results obtained showed that the initial yield curves for steel I-sections under minor axis bending require revision for application to RPHM, mainly due to the loss of symmetry in relation to the ''M'' axis in the normal force-bending moment (''NM'') interaction diagram.Item Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications.(2022) Fernandes, William Luiz; Barbosa, Gustavo Botelho; Greco, Marcelo; Silveira, Ricardo Azoubel da MotaThe present paper aims to test recent (Truly self-starting two sub-step method and three-parameter singlestep implicit method) and classical (Generalized-α, HHT-α, and WBZ-α methods) time integration methods using the geometrically nonlinear Positional Finite Element Method (PFEM). The numerical formulation is based on the total Lagrangian approach and uses the Hessian matrix to obtain the response. The mixed hardening inelastic model applied to PFEM is also presented. Two examples validate the time integration algorithms and the inelastic model. In the first example, the mixed hardening inelastic model is compared with the the bilinear stress-strain model and the elastic-perfectly plastic hinge model, and aspects such as amplitude decay and period elongation are discussed. In the second example, the implemented algorithms are verified in a severe geometrically nonlinear example, considering the influence of numerical dissipation, time interval, and the number of elements in the response. Results show the relevance of numerical damping for numerical stabilization and the good performance of the Generalized-α algorithm.Item Influence of inverted-v-braced system on the stability and strength of multi-story steel frames.(2023) Azevedo, Iara Santana de; Silva, Andréa Regina Dias da; Silveira, Ricardo Azoubel da MotaPopulation growth in urban centers, together with the lack of physical space, has led to the construction of increasingly tall and slender buildings. Multiple-story structures present substantial challenges to civil engineering because they have specific requirements for their design, construction, and use. The increased number of floors leads to more lateral displacements resulting from horizontal actions. Under these conditions, to ensure system stability, structural bracing components are commonly adopted. In addition, along with the use of more resistant materials and new construction techniques, it is necessary to improve the methodologies adopted in the structural analysis to offer professionals in the area the conditions to undertake safer and more economical projects with better speed and efficiency. Thus, in this study, numerical analyses were applied to steel planar reticulated structures to evaluate their stability and strength when inserting bracing systems. The study compared the arrangement of the bars and analyzed the influence of the parameters of the bracing systems, such as the properties of the cross-section and the position of the inverted-V-braced system. The MASTAN2 program was used to perform nonlinear static assessments using reticulated finite elements that considered both geometrical and physical nonlinearities. It was observed that the inverted-V-braced system had a substantial impact on all of the structures that were analyzed, providing increased stiffness and, as a result, significantly reducing the frame’s lateral displacement.Item Advanced numerical study of composite steel-concrete structures at high temperature.(2021) Barros, Rafael Cesário; Silveira, Ricardo Azoubel da Mota; Maximiano, Dalilah Pires; Lemes, Igor José MendesThe composite steel-concrete structures use has several advantages, such as the reduction of cross-sectional dimensions and weight of the structure, which is one of the main reasons for it is use today. However, under fire situation, the material and mechanical properties changes, causing significant strength and stiffness loss as a result of temperature rise. In this work, the temperature influence on the behavior of composite steel-concrete structures is studied through an inelastic second order (ISO) numerical investigation. For this, two computational modules, CS-ASA/FA and CS-ASA/FSA are developed and adapted for the study of composite structures in fire. The first module calculates the temperature field in any cross-section. The second module performs the ISO analysis through the coupling between the Refined Plastic Hinge Method (RPHM) and the Strain Compatibility Method (MCD). In this way, the evolution of the temperature in cross-sec- tions, the interaction diagrams between axial force and bending moment and the structures equi- librium path as a function of the time in fire are presented for composite steel-concrete beams, columns and frames. The proposed numerical methodology success is proved by comparison with experimental and numerical responses available in the literature.Item Concentrated approaches for nonlinear analysis of composite beams with partial interaction.(2021) Carvalho, Tawany Aparecida de; Lemes, Igor José Mendes; Silveira, Ricardo Azoubel da Mota; Dias, Luís Eduardo Silveira; Barros, Rafael CesárioTwo plane displacement-based formulations with concentrated nonlinear effects for numerical analysis of composite beams are presented here. The effects of geometric nonlinearity, plasticity and partial shear connection are considered. In these two approaches, the co-rotational system is defined to allow large displacements and rotations in the numerical model. The first formulation is based to Strain Compatibility Method, where the sections strains are explicitly evaluated as well as the slipping at the steel-concrete interface. Thus, the axial and flexural stiffness of the cross section is determined in each step of the incremental-iterative process. The second methodology considers rotational pseudo-springs at the finite elements ends to simulate of plasticity. Further- more, the effects of partial interaction can not be simulated by the inherently rotational behavior of the pseudo-springs. Thus, the cracking and partial interaction effects are approached through effective moment of inertia defined by normative criteria. Four composite beams are simulated with these two formulations and compared by the load-displacements paths. In all numerical re- sult findings these formulations are closed and accurate to the experimental data presented in lit- erature.Item Numerical analysis of steel–concrete composite beams with partial interaction : a plastic-hinge approach.(2021) Lemes, Igor José Mendes; Dias, Luís Eduardo Silveira; Silveira, Ricardo Azoubel da Mota; Silva, Amilton Rodrigues da; Carvalho, Tawany Aparecida deA two-dimensional displacement-based formulation with a plastic-hinge approach for the numerical analysis of composite beams with partial shear connection is presented here. The co-rotational approach is applied in the numerical model to allow large displacements and rotations. The axial and transverse displacement functions are defined to avoid locking problems. The simulation of the materials and shear connection nonlinear behaviors are approached via the strain compatibility method (SCM), where the constitutive relations are explicitly used. The slip in the steel section–concrete slab interface is considered by the axial force decomposition in the cross-section level by the degree of composite action, without introducing degrees of freedom in the finite element. The numerical proposal of the present work is tested by simulating steel–concrete composite beams and comparing the obtained results with the experimental and numerical data already known. This formulation is verified as numerically stable and without locking phenomena, and good convergence with literature results was obtained. However, more refined finite element (FE) meshes are needed.Item Closed-form solutions for the symmetric nonlinear free oscillations of pyramidal trusses.(2021) Santana, Murillo Vinícius Bento; Gonçalves, Paulo Batista; Silveira, Ricardo Azoubel da MotaThis work presents the development of analytical solutions regarding the symmetric free vibrations of pyramidal trusses, considering a general large strain measure. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. Illustrative examples considering the quadratic (Green–Lagrange) and logarithmic (Hencky) strain measures are used to exemplify the influence of the strain measure on the results. Pyramidal trusses are well-known bistable structures and in the unloaded configurations may present different analytical solutions depending on the initial conditions: small amplitude vibrations around each stable equilibrium configuration or large cross-well vibrations. These families of solution are separated by two homoclinic orbits, constituting the boundaries of the two potential wells, which are related to the saddle point initial conditions. In addition, closed-form time solutions for the undamped vibrations are derived and the nonlinear frequency–amplitude relations, which are a measure of the degree and type of nonlinearity (hardening or softening), are obtained. Finally, a semi-analytical procedure for the damped vibrations is also constructed.Item Plastic analysis of steel arches and framed structures with various cross sections.(2021) Silva, Jéssica Lorrany e; Deus, Lidiane Rodrigues Reis Maia de; Lemes, Igor José Mendes; Silveira, Ricardo Azoubel da MotaThis paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.Item Second-order inelastic analysis of shallow and non-shallow steel arches.(2020) Deus, Lidiane Rodrigues Reis Maia de; Silveira, Ricardo Azoubel da Mota; Lemes, Igor José Mendes; Silva, Jéssica Lorrany eThis work presents a second-order inelastic analysis of steel arches. The analysis of shallow and non-shallow arches with several cross sections and boundary and loads conditions are discussed. The computational platform used is the homemade CS-ASA, which performs advanced nonlinear static and dynamic analysis of structures. The nonlinear geometric effects are considered using a co-rotational finite element formulation; the material inelasticity is simulated by coupling the Refined Plastic Hinge Method (RPHM) with the Strain Compatibility Method (SCM), and the static nonlinear solution is based on an incremental-iterative strategy including continuation techniques. In the simulated nonlinear steel arch models, special attention is given to the equilibrium paths, the influence of rise-to-span ratio, support and loading conditions and full yield curves among other factors. The numerical results obtained show good agreement with those from literature and highlight that the arch rise-to-span ratio has great influence on the structure resistance and that the shallow arches can lose stability through the snap-through phenomenon.Item An efficient inelastic approach using SCM/RPHM coupling to study reinforced concrete beams, columns and frames under fire conditions.(2020) Pires, Dalilah; Barros, Rafael Cesário; Silveira, Ricardo Azoubel da Mota; Lemes, Igor José Mendes; Rocha, Paulo Anderson SantanaThis work has as its main objective the study of the behavior of reinforced concrete beams, columns and structural frames in a fire situation. To do so an efficient numerical formulation was developed, implemented and evaluated. When exposed to high temperatures, the characteristics of the materials deteriorate, resulting in a considerable loss of strength and stiffness of the structure. The CS-ASA (Computational System for Advanced Structural Analysis) was used to achieve the objective. This computer system was expanded for advanced analysis of structures in fire conditions, taking advantage of the existing features and adding new ones. Two new computational modules were created: CS-ASA/FA (Fire Analysis) and CS-ASA/FSA (Structural Fire Analysis). The first one was used to determine the temperature field in the structural elements’ cross-section through thermal analysis by the Finite Element Method (FEM) in permanent and transient regimes. The second was created to perform the second-order inelastic analysis of structures under fire using the FEM formulations based on the Refined Plastic Hinge Method (RPHM) and the Strain Compatibility Method (SCM) coupling, which can be considered a unique feature of the present study. The use of SCM allows for a more realistic analysis against the design codes prescriptions. Consequently, even under high temperatures, SCM is used for evaluation of both bearing capacity and stiffness parameters. The results of the nonlinear analysis in a fire situation for eight structural elements and systems with different geometries, boundary, heating and loading conditions are in good agreement with the numerical and experimental results found in the literature.