EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Treatment of high-manganese mine water with limestone and sodium carbonate.
    (2012) Silva, Adarlêne Moreira; Cunha, Emmanoelle Cintra da; Gonzaga, Flávia Donária Reis; Leão, Versiane Albis
    Manganese is one of the most difficult elements to remove from mine waters, due to its high solubility in both acid and neutral conditions; thus it can be found in quite high concentrations, depending on the rock’s mineralogy. Metal carbonate precipitation can be an effective way for its removal, as manganese carbonate has been detected in net alkaline mine waters. However, limestone is effective in removing manganese only if the metal content is low. This research sought to study manganese precipitation from high-manganese (140 mL) content mine waters applying sodium carbonate and limestone mixtures. It was observed that besides the total carbonate concentration, pH plays a key role on manganese carbonate formation. Provided the pH solution is above 8.5, 99.9% manganese removal can be achieved with carbonate ions. Although not required for manganese precipitation, limestone acts as a solid substrate for the nucleation of fine manganese carbonate grains. Infrared spectroscopy showed manganese carbonate precipitation on the limestone surface. Magnesium was also removed from the mine water but magnesium carbonate formation was not observed.
  • Item
    Mine water treatment with limestone for sulfate removal.
    (2012) Silva, Adarlêne Moreira; Lima, Rosa Malena Fernandes; Leão, Versiane Albis
    Limestone can be an option for sulfate sorption, particularly from neutral mine drainages because calcium ions on the solid surface can bind sulfate ions. This work investigated sulfate removal from mine waters through sorption on limestone. Continuous stirred-tank experiments reduced the sulfate concentration from 588.0 mg/L to 87.0 mg/L at a 210-min residence time. Batch equilibrium tests showed that sulfate loading on limestone can be described by the Langmuir isotherm, with a maximum loading of 23.7 mg/g. Fixed-bed experiments were utilized to produce breakthrough curves at different bed depths. The Bed Depth Service Time (BDST) model was applied, and it indicated sulfate loadings of up to 20.0 g (SO4)2− /Lbed as the flow rate increased from 1 to 10 mL/min. Thomas, Yoon–Nelson and dose–response models, predicted a maximum particle loading of 19 mg/g. Infrared spectrometry indicated the presence of sulfate ions on the limestone surface. Sulfate sorption on limestone seems to be an alternative to treating mine waters with sulfate concentrations below the 1200–2000 mg/L range, where lime precipitation is not effective. In addition, this approach does not require alkaline pH values, as in the ettringite process.