EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
2 resultados
Resultados da Pesquisa
Item Kaolinite removal from bauxite by flotation.(2016) Rodrigues, Otávia Martins Silva; Peres, Antônio Eduardo Clark; Henriques, Andréia Bicalho; Amorim, Bárbara GonçalvesThis paper presents a potential condition to separate kaolinite through flotation when it is present in bauxite ore. This research anticipates a Brazilian industry requirement, considering the tendency towards the need for aluminosilicates removal from bauxite ores, as has already occurred in China. Kaolinite is the most abundant aluminosilicate, and gibbsite is the main aluminum bearing mineral in Brazilian bauxite ores. The first step was a fundamental study involving microflotation experiments with pure samples of kaolinite and gibbsite. Ammonium quaternary salts and amines were used as the collector and corn starch as the depressant. In a fundamental study, the best conditions determined in the first step were evaluated for the flotation of kaolinite from bauxite ore using laboratory scale experiments. Tests with AQ142/starch (pH 10) and CTAB (pH 7) led to satisfactory results. In general, the highest values of alumina/silica mass ratio were obtained with AQ142/starch and the highest values of mass recovery and metallurgical recovery were achieved with CTAB.Item Kaolinite and hematite flotation separation using etheramine and ammonium quaternary salts.(2013) Rodrigues, Otávia Martins Silva; Peres, Antônio Eduardo Clark; Martins, Afonso Henriques; Pereira, Carlos AlbertoClay minerals are widespread in various types of mineral deposits. When present, they contribute to the high content of certain parameters such as silica, aluminium, and magnesium. This study aimed to find selectivity windows to separate hematite from a clay mineral (kaolinite) to allow reduction of the levels of silica and alumina in iron ore. The collectors used were: etheramine Flotigam EDA (EDA) and the ammonium quaternary salts: dodecyltrimethylammonium bromide (DTAB) and Tomamine Q-14-2 PG (AQ142). The depressant used was corn starch. The separation selectivity was achieved using DTAB in the pH range between 4 and 10. Using the collectors EDA and AQ142, the selectivity was obtained only in the presence of starch, at pH 10. Laboratory scale tests showed that as far as the particles size is concerned, better selectivity was achieved with finer particles. Circuit configurations including cleaner and scavenger stages, and pilot scale tests, will be required prior to a possible industrial implementation of the separation.