EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
3 resultados
Resultados da Pesquisa
Item Late Permian siliceous hot springs developed on the margin of a restricted epeiric sea : insights into strata-confined silicification in mixed siliciclastic‐carbonate successions.(2022) Varejão, Filipe Giovanini; Warren, Lucas Veríssimo; Alessandretti, Luciano; Rodrigues, Mariza Gomes; Riccomini, Claudio; Assine, Mario Luis; Cury, Leonardo Fadel; Faleiros, Frederico Meira; Simões, Marcello GuimarãesHot springs are sources of carbonate minerals in modern settings; however, few fossil structures are recorded in successions older than the Quaternary due to their enhanced erosional potential. >4500 siliceous mounds are recognized in a well-defined level from the upper part of the Permian Teresina Formation (Parana ́ Basin, SE Brazil). Additionally, a new mound level is here reported for the first time about 15 m below the main occur- rence. Remarkable lithological, mineralogical, paleontological and geochemical features characterize the mounds of both levels, pointing to a hydrothermal origin. Therefore, these structures are here called as hot springs. These were originated subaerially, on the margins of a closing epeiric sea developed on a large intra- continental sag basin. Hydrothermal fluids were sourced from deep circulating basin waters that erupted through intraplate deep-rooted faults. Our data suggests that these hot springs were active during distinct cycles of base level variations. Strata-confined silicification was enhanced during periods of high evaporation and hydrother- mal exudation. Finally, the vertical and lateral facies associations of the Permian hot spring succession are compared with modern sites, and implications for the recognition of syn-depositional hydrothermally precipitated silica in ancient sedimentary basins are discussed.Item Towards an actualistic view of the Crato Konservat-Lagerstätte paleoenvironment : a new hypothesis as an Early Cretaceous (Aptian) equatorial and semi-arid wetland.(2021) Ribeiro, Alexandre Cunha; Ribeiro, Guilherme Cunha; Varejão, Filipe Giovanini; Battirola, Leandro Dênis; Pessoa, Edlley Max; Simões, Marcello Guimarães; Warren, Lucas Veríssimo; Riccomini, Claudio; Poyato-Ariza, Francisco JoséAn alternative hypothesis concerning the paleoecological and paleoenvironmental depositional conditions of the Crato Konservat-Lagerstatte ̈ (CKL), Crato Formation, Aptian, NE Brazil, one of the most extraordinary Gondwana fossil sites, is proposed. Following an actualistic approach, the ecology of extant relatives of the most abundant and diverse fossil groups recorded in the CKL (i.e., vascular plants, arthropods, fishes, and tetrapods) is considered. Data is based on an extensive literature review followed by a re-examination of recently collected fossils. This approach allowed a detailed appraisal of the stratigraphic/ecological distribution of the main fossil groups preserved in the CKL. Plant and animal groups are recorded in three main stratigraphic intervals, named Intervals I–III in ascending order. Most fossils are to be considered autochthonous to parautochthonous and have been preserved in distinct stages of base-level fluctuations within a shallow lacustrine depositional system, subject to periodic flooding in large, depressed areas. Exceptional preservation in such environments was mediated by microbially-induced processes (i.e., microbial mat entombment), mostly in the coastal areas of the alkaline lake. Based on the distinct sedimentary facies and autecological attributes of dominant paleo- bioindicators, a new paleoenvironmental model for the CKL is proposed, encompassing a seasonal, semi-arid, shallow lacustrine wetland. Faunal and floral content were ecologically arranged in long-lasting aquatic zones, surrounded by periodically flooded mesophytic ecotones and outer xeric habitats, as in the modern alkaline lake Chad in Africa. Our data show the relevance of multiproxy analyses (i.e., paleontological, sedi- mentological, geochemical, and stratigraphic) of exceptional fossil sites for assessing paleoenvironmental con- ditions in depositional settings subject to continuous base-level changes, such as those existing in complex, present-day wetland ecosystems. The recognition of key parameters in ancient wetlands is of great importance concerning the formation of non-marine Konservat-Lagerst ̈ atten in the geological record.Item Shaking a methane fizz : seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record.(2013) Tohver, Eric; Cawood, Peter Anthony; Riccomini, Claudio; Lana, Cristiano de Carvalho; Trindade, Ricardo Ivan Ferreira daThe Late Permian and Early Triassic periods are marked by large fluctuations in the carbon isotope record, but the source(s) of the disturbance to the global carbon cycle and the link to the end-Permian mass extinction arewidely debated. This contribution explores the possible isotopic effects of an impact event into the hydrocarbon-rich rocks of the Paraná–Karoo Basin. Recent U–Pb and 40Ar/39Ar dating of the 40 km Araguainha impact structure of central Brazil reveals an age of 254.7 ± 2.5 Ma (2σ error) for this event. The calculated energy (10^5–10^6 MT of TNT equivalent) released by this impact is less than threshold values of 10^7–10^8 MT TNT equivalent for global mass extinctions. Thus, the Araguainha crater is unlikely to have been the cause of the end-Permian biotic crisis. However, the combined seismic effects from the impact itself and the post-impact collapse of the 20–25 km diameter transient crater to its present 40 km diameter would result in large magnitude earthquakes (Mw 9.3–10.5) and tsunamis in the shallow marine Paraná–Karoo Basin. Slope failure and sediment liquefaction are predicted to have occurredwithin a 700–3000 km radius of the crater, causing large-scale release of methane from organic-rich sediments of this basin, including the oil shale horizons of the Iratí Formation. New geological evidence for seismicity in the Paraná Basin at the time of impact is presented, together with a compilation of existing carbon isotope data from the Paraná Basin, which demonstrate a widespread pattern of disturbance consistent with the release of methane. These two datasets suggest that both seismicity and methane release took place within ca.1000 km of the impact site, with mass balance calculations suggesting ca. 1600 GT of methane were released into the atmosphere at this time. Methane release at this scale would have significant climate effects and would contribute to a sharp (<1 ka) negative shift in δ^13 C values at the time of the impact, which should be distinguishable from the more gradual shift over 0.5–1 Ma caused by contemporaneous intrusion of the Siberian traps.