EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Item
    Formulações numéricas para análise de vigas em contato com bases elásticas.
    (2003) Pereira, Wellington Luís Assis; Silveira, Ricardo Azoubel da Mota
    Este trabalho tem como objetivo principal o desenvolvimento de duas metodologias capazes de resolver o problema de equilíbrio de vigas com restrições de contato. Essas restrições de contato são impostas aqui por bases elásticas modeladas com um parâmetro de rigidez (modelo de Winkler ou molas discretas), e duas situações de contato são consideradas, a saber: bilateral e unilateral. No caso de contato unilateral, a fundação elástica reage somente às solicitações de compressão; já na situação de contato bilateral, a base reage às solicitações de tração e compressão. Na primeira parte do trabalho, uma metodologia geral de solução baseada no emprego do método de Rayleigh–Ritz é proposta e usada em seguida para resolver três problemas particulares de vigas com restrições unilaterais de contato. Uma estratégia de solução iterativa, baseada no método de Newton–Raphson, é usada para resolver o sistema de equações não-lineares resultante da formulação do problema. Na segunda parte da pesquisa, o método dos elementos finitos é usado para discretizar a viga e a fundação elástica, e o problema de contato é tratado diretamente como um problema de minimização, envolvendo somente as variáveis originais do problema, sujeitas às restrições de desigualdade e à condição de complementaridade. Duas formulações são então desenvolvidas (primal e dual) onde as equações relevantes para a solução do problema de contato são escritas na forma de um problema de complementaridade linear (PCL) e resolvidas através do algoritmo de Lemke. As duas metodologias propostas são analisadas e testadas através de vários exemplos e as respostas obtidas através das implementações computacionais realizadas são comparadas com os resultados encontrados na literatura. Por fim, algumas conclusões sobre as metodologias e as formulações desenvolvidas e implementadas, e sobre as aproximações dos resultados são apresentadas no final do trabalho.