EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Quartzite tailings in civil construction materials : a systematic review.
    (2023) Martins, Letícia Matias; Peixoto, Ricardo André Fiorotti; Mendes, Júlia Castro
    The inadequate management of waste from the mining industry can lead to several environmental problems. For instance, the extraction of quartzite, an ornamental stone, generates quartzite waste (or residues or tailings) (QTZ), which is commonly deposited in the environment, causing landscape degradation, contamination by dust, and silting of rivers. To mitigate this scenario and stimulate the circular economy, this literature review focuses on the use of quartzite tailings in construction materials. A systematic search was carried out in the Scopus, Web of Science, and Google Scholar databases, including articles in English and Portuguese published between 2007 and 2022. The results showed that the use of QTZ as aggregate in cement-based composites is viable, as this waste has physical, chemical, mineralogical, and microstructural characteristics similar to conventional natural aggregate. Quartzite waste has been successfully adopted in precast concrete, cladding, and laying mortars, soil–cement bricks, and interlocking pavements. Many works brought the physical and mechanical characterization of the proposed construction materials, with gaps being observed mainly in terms of durability and performance. In conclusion, the use of QTZ in construction materials is a promising alternative, especially in cement-based composites. An important advantage is that this material requires little or no prior processing. However, the reuse of quartzite tailings is still limited, showing that more academic studies, private initiatives, and public policies are required.
  • Item
    Correlation between ultrasonic pulse velocity and thermal conductivity of cement-based composites.
    (2020) Mendes, Júlia Castro; Barreto, Rodrigo Rony; Costa, Laís Cristina Barbosa; Silva, Guilherme Jorge Brigolini; Peixoto, Ricardo André Fiorotti
    The thermal conductivity of construction materials is among the main factors influencing the thermal performance of buildings. This property is, thus, extensively demanded for design purposes. The thermal conductivity is especially related to the pore system and the composition of cement-based composites, the same factors that affect their Ultrasonic Pulse Velocity (UPV). In this sense, the present work evaluates the correlation between thermal conductivity and UPV. To this purpose, mortar specimens were investigated, with varying mix proportions, fine aggregate types, and dosages of air-entraining admixture. A satisfactory determination coefficient (R2 > 0.9) was obtained between thermal conductivity and UPV of the mortars when they were grouped under similar components and pore structure. It was observed that the pore system of the mortars tested is more influential to the UPV than their overall porosity. In this sense, a better correlation was found between UPV and thermal conductivity than between thermal conductivity and specific gravity. Additionally, the fine aggregate type presents a significant impact—not only due to its chemical and mineralogical properties but also as a result of the morphology that each aggregate generates within the matrix. In conclusion, this technique potentially presents high applicability to the thermal characterisation of cement-based composites.