EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Toward improved performance of unpaved roads : laboratory tests and field investigation of a soil-byproduct base layer.
    (2020) Magalhães, Adair José de; Gomes, Guilherme José Cunha; Pires, Patrício José Moreira
    In this study, the performance of two steel slag byproducts is investigated to produce mixtures for base layers of unpaved roads. The basic physical properties including Atterberg limits, grain size distribution, California bear- ing ratio and expansion tests of eight different mixtures of soil-byproduct are investigated in laboratory to understand the engineering properties of the mixtures. The byproducts are mixed in different proportions from 50% to 80% by weight with a local (clayey) subgrade soil. Subsequently, two selected mixtures are used to build an experimental road section along an unsurfaced road. Results demonstrate that the gradation and strength of the samples satisfy the requirements for base layers. Furthermore, the mix- tures are shown to be of low-plasticity at higher byproduct content and non-expansive. Field investigations show that 12 roller passes at the stan- dard Proctor and 14 at the intermediate Proctor are enough to reach 100% of the degree of compaction.
  • Item
    A sustainability-oriented framework for the application of industrial byproducts to the base layers of low-volume roads.
    (2021) Gomes, Guilherme José Cunha; Magalhães, Adair José de; Rocha, Fabiano Lucindo Lima da; Fonseca, Alberto de Freitas Castro
    Roadway engineering works typically rely on the utilization of natural aggregates as building materials. However, growing pressures for sustainable roads are highlighting the importance of replacing virgin materials with industrial byproducts. Constructors worldwide are trying to select optimum soilbyproduct mixtures that have a fair trade-off between engineering properties, environmental impacts and material costs. This requires a multi-objective analysis to explore feasible mixtures that honor a set of preferences to mathematically identify the best compromised soil-byproduct mixture. In this paper, a sustainability-oriented framework is proposed for selecting optimum soil-byproduct proportions for unbound base layers of unpaved roads. A compromise programming tool is implemented to select a mixture that is statistically preferred over mixtures with different byproduct contents. The method is illustrated using technical, economic and environmental indicators that are easily measurable. Investigations are performed for different decision-making perspectives including the constructor’s, contractor’s and the environment’s viewpoints. Two byproducts from the steel industry are mixed in different proportions from 50% to 80% by weight with a clayey soil. The optimum mixture was obtained at a proportion of 70% byproduct and 30% clay. Monte Carlo simulations and sensitivity analysis of transport scenarios further supported this conclusion. Results demonstrate that mixture selection based only on strength properties provides inadequate optimum from a sustainable standpoint. The proposed framework can help road constructors incorporate environmentally-friendly materials in a cost-effective way, while maintaining the technical quality of base layers.