EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Item
    Using detrital zircon and rutile to constrain sedimentary provenance of Early Paleozoic fluvial systems of the Araripe Basin, Western Gondwana.
    (2022) Cerri, Rodrigo Irineu; Warren, Lucas Veríssimo; Spencer, Christopher J.; Varejão, Filipe Giovanini; Promenzio, Paloma; Luvizotto, George Luiz; Assine, Mario Luis
    The Early Paleozoic of the NE Brazilian sedimentary basins are key to understanding the primeval depositional environments and paleogeography of Western Gondwana after its final assembly. In this context, determining the sedimentary provenance of the Early Paleozoic Cariri Formation (basal unit of the Araripe Basin) may improve paleogeographic reconstructions and stratigraphic correlations. Despite the Araripe Basin being one of the best-studied interior basins of northeastern Brazil, the Cariri Formation lacks detailed geochronological and sedimentary provenance analyses, which hamper precise definitions of its depositional age, sedimentary source areas and paleogeography. Considering this scenario, we performed a combined multiproxy approach, including sedimentologic and stratigraphic analysis, detrital zircon U–Pb dating and provenance studies based on trace elements in detrital rutile. The maximum depositional age for the Cariri Formation suggests that its sedimentation started after the Late Cambrian. Detrital zircon ages and detrital rutile provenance indicate that the primary source areas for the Cariri Formation fluvial system were the orogenic terranes related to the Brasiliano Orogeny, located at the SE of the Borborema Province (e.g., Sergipano Belt), with secondary, but also important, the contribution of Cambrian sources. Records of this event are also found in northern Africa, where units related to the Neoproterozoic East African-Antarctic and Pan African orogens provided sediments for basin-scale fluvial systems.
  • Item
    Evidences of seismic events during the sedimentation of Sete Lagoas Formation (Bambuí Group – Ediacaran, Brazil).
    (2020) Okubo, Juliana; Warren, Lucas Veríssimo; Luvizotto, George Luiz; Varejão, Filipe Giovanini; Quaglio, Fernanda; Uhlein, Gabriel Jubé; Assine, Mario Luis
    The Sete Lagoas Formation (Ediacaran), located in the central part of the São Francisco Craton (Brazil), consists of limestones and dolostones deposited in very shallow waters in the inner part of the carbonate platform. Four breccia types occur throughout the stratigraphic succession: evaporitic breccia with tepees, flat-pebble breccia, hydrothermal breccia and brecciated stromatolites. Here we combine a detailed sedimentological and strati- graphic analyses of the flat-pebble breccia in order to determine its origin and the processes and environmental conditions that originated these brecciated facies. The studied interval consists of a 20 m thick succession of tabular beds composed of flat-pebble breccia interbedded with laminated microbialites. In these breccia beds, the clasts are usually platy or oblate with angular edges and are mainly disposed horizontally within the sedi- mentary bed, suggesting that they were not transported or reworked. The presence of microbialite clasts with sharp edges and vertices in the Sete Lagoas flat-pebble breccia suggests that the lithification process started very early in diagenesis and, even the sediments exposed at the bottom were, at least, partially lithified. Some breccia levels show bidirectional imbrication and clast size analyses reveal a NE-SW long-axis clast orientation whereas square clasts tend to fill the space among oriented clasts. Breccia clasts are vertically oriented and show de- formation features increasing upwards, typically of deforming beds formed by ascendant expulsion of liquefied sediment. Disrupted layers or presenting folds and synsedimentary faults commonly occur confined between undeformed beds. Other evidences of liquefaction and soft-sediment deformation are the injection structures, as flame and load cast-like features, in the base of the brecciated beds. These structures commonly penetrate the upper bed and disrupt the sedimentary layer immediately above promoting local brecciation. These features are found both in modern and ancient deposits of seismic influence, which suggests a similar origin for the Sete Lagoas flat-pebble breccia. Thus, the processes that led to the formation of the studied flat-pebble breccia are interpreted as seismically triggered, since: a) the breccia beds are laterally continuous and extend for several kilometers; b) the breccia beds are restricted to a 20 m thick stratigraphic interval; c) the clasts of the breccia are the same lithology of non-deformed beds below and above the interval of breccia; d) the interbedding of breccia beds and laminated microbialite beds is recurrent; e) the breccia beds are subhorizontal and present irregular upper and lower contacts; f) the presence of liquefaction structures and dyke injection. Thus, this seismic-trig- gered breccia deposits represent the product of the synsedimentary tectonism occurred within the São Francisco Craton during the terminal Ediacaran and correspond to a very well-defined local stratigraphic marker in the Bambuí Basin. The seismic activities could be related to the NW regional faults in the regional Paleoproterozoic basement of the study area, which were reactivated during the deposition of the Sete Lagoas Formation in the Ediacaran Period.
  • Item
    Unraveling the origin of the Parnaíba Basin : testing the rift to sag hypothesis using a multi-proxy provenance analysis.
    (2020) Cerri, Rodrigo Irineu; Warren, Lucas Veríssimo; Varejão, Filipe Giovanini; Marconato, André; Luvizotto, George Luiz; Assine, Mario Luis
    Syneclises are long-lived sedimentary basins characterized by complex subsidence and erosion histories. The premise that these geotectonic units evolve from initial rifting processes following thermal (or flexural) subsidence is widespread in the geologic sciences and, to this day, remains a controversial issue. Seeking to test this hypothesis, we proceeded a novel multi-proxy provenance study aiming to identify differences (and/or similarities) in the sedimentary signal and source areas of the Jaibaras (rift) and Parnaíba (sag) basins. We conducted a detailed analysis of trace elements geochemistry of detrital rutile grains, macroscopic gravel composition and paleocurrents from the sedimentary deposits of the Aprazível Formation (Ediacaran - Cambrian, top of Jaibaras Basin) and the Ipu Formation (Ordovician, basal unit of Parnaíba Basin). Our data reveal that important changes in source areas occurred between the end of the rifting and the beginning of the sag phase, reinforcing the hypothesis that the evolution of the Jaibaras and Parnaíba basins were not genetically related. Our results demonstrate that conglomerates of the rift sequence are predominantly composed of volcanic, sedimentary, and metamorphic angular to sub-angular clasts, pointing to diverse, nearby source areas. Contrastingly, conglomerates of the initial sag sequence have greater sedimentary maturity, with dominant rounded vein quartz clasts and other minor source contributions, which suggest distant source areas, showing a consistent paleocurrent direction towards NW. Indeed, the detrital rutile trace elements geochemistry demonstrates that the source areas of these two units were distinct, revealing an important decrease in the input of granulite facies and metamafic grains in the sag basin comparing with the rift succession. In conclusion, as well as paleomagnetic and geochronological studies, the provenance methods using a multi-proxy approach proved to be an effective and powerful technique for distinguishing modifications in the sedimentary signal between rift-to-sag sequences.