EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
2 resultados
Resultados da Pesquisa
Item Effect of thermal aging on the microstructure and mechanical properties of stainless steel UNS S31803.(2020) Costa, Junia Maria Gândara; Lacerda, José Carlos de; Godefroid, Leonardo Barbosa; Cândido, Luiz CláudioDuplex stainless steel UNS S31803 exhibits high mechanical strength with high corrosion properties, due to its microstructure composed of ferrite and austenite phases, in equal proportion. When the UNS S31803 steel is submitted to high temperatures, some precipitations can occur, such as nitrites, carbides, and third phases (e.g. sigma phase -σ, and alpha prime - α'). These phases are deleterious in relation to the mechanical properties and corrosion resistance, and their effects are analyzed regarding the properties of the steel. In order to evaluate the precipitation of this deleterious phase, isothermal treatment was done at 500°C for 144 hours (α' phase) and at 850ºC for 80 minutes (σ phase). The results were obtained through the microstructural analysis and tensile tests. The presence of sigma phase was verified in the grain boundary, an increase in the mechanical resistance with a loss of toughness. There was as well as an increase in mechanical resistance with the precipitation of α', with less loss of ductility than that observed in the experiments involving the presence of sigma phase.Item Effect of volume fraction of phases and precipitates on the mechanical behavior of UNS S31803 duplex stainless steel.(2015) Lacerda, José Carlos de; Cândido, Luiz Cláudio; Godefroid, Leonardo BarbosaMechanical properties of a grade UNS S31803 duplex stainless steel were studied. Samples were annealed at three different temperatures, 1060 C, 1200 C, and 1300 C, to change the a/c proportion, to precipitate undesirable phases (for example, a0 , r and chromium nitrides), and to study the effect of the microstructure on the mechanical behavior. Specimens with a thickness of 1.8 mm were prepared according to ASTM standards and tested at room temperature. Tensile tests were conducted using displacement control at a rate of 5 mm/min. Force-controlled constant amplitude axial fatigue tests were conducted at a frequency of 30 Hz and an R stress ratio of 0.1. Microstructural analyses, performed by optical microscopy and scanning electron microscopy, showed the following modifications to the microstructure: changes in the phase volume fractions, the phase grain growths, and the morphology of the c-phase and the precipitation of chromium nitrides in the a-phase. The mechanical properties of the steel were significantly changed due to the changed microstructure. The results demonstrate the sensitivity of the steel to the annealing temperature.