EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Item
    Characterization of magnetic tailings from phosphate-ore processing in Alto Paranaíba.
    (2023) Silva, Fernando Brandão Rodrigues da; Araújo, Fernando Gabriel da Silva; Krüger, Fernando Leopoldo von; Silva, Guilherme Jorge Brigolini; Batista, Ronaldo Junio Campos; Manhabosco, Taíse Matte
    The characterization studies of tailings from mining are crucial for the development of its reuse processes and the reduction of impacts caused by its conditioning on the earth’s surface. This study characterizes the magnetic tailings from phosphate-rock processing using X-ray diffraction, X-ray fluorescence spectrometry and quantitative electron microscopy techniques. Samples were obtained from the magnetic tailings deposit of a mining company in the Alto Paranaíba region, Minas Gerais. The tailings are mainly composed of hematite/magnetite (74.92%), ilmenite (8.91%), fluorapatite (8.8%), anatase (3.07%), calcite (1.67%), goethite (1.62%), and quartz (1.02%). The particle size of the tailings is smaller than that specified for the production of sinter feed. The hematite/magnetite phase is strongly associated with ilmenite and fluorapatite. New stages of comminution and separation are needed due to the low degree of liberation of these minerals for a possible reuse of the components.
  • Item
    Mineralogical characterization of iron ore tailings from the Quadrilatero Ferrifero, Brazil, by Eletronic Quantitative Mineralogy.
    (2019) Ávila, Kelly de Souza Pires; Mendes, Jefferson Januário; Figueiredo, Vinícius Costa; Silva, Fabiane Leocádia da; Krüger, Fernando Leopoldo von; Vieira, Cláudio Batista; Araújo, Fernando Gabriel da Silva
    The mineralogical characterization studies search for the best processing route, with the lowest environmental impact, aiming to improve the use of mineral resources. The electronic quantitative mineralogy (EQM) provides quickly and accurately great information about the characteristics of these materials. This work aims to characterize iron ore tailings by EQM as the main tool. It has selected seven samples of itabirite ores flotation tailings from the main mining regions of the Quadrilatero Ferrifero, Brazil. All samples were mostly composed by quartz and iron minerals, with a low presence of mixture particles of these minerals - less than 20% of the sample mass. Due to the difference between the size of particles of quartz and iron minerals, it has observed an opportunity to reprocess the fractions -37μm + 5μm of the studied tailings, with a potential recovery of 12% of the total sample mass generated for AM4, AM6 and AM7 and more than 5% for samples AM1, AM2, AM3 and AM5.
  • Item
    Characterization of manganese alloy residues for the recycling of FeSiMn and high-carbon FeMn fines.
    (2008) Faria, Geraldo Lúcio de; Reis, Érica Linhares; Araújo, Fernando Gabriel da Silva; Vieira, Cláudio Batista; Krüger, Fernando Leopoldo von; Jannotti Júnior, Nelson
    Crushing residues of FeSiMn and high-carbon (HC) FeMn alloys were characterized in order to evaluate their recycling possibility. Particle size determination was performed by screening, followed by chemical analysis of each particle size range using plasma spectrometry (ICP-AES). The slag content was identified and quantified by optical microscopy. All of the fines with grain sizes above 1.18 mm presented alloy contents in excess of 99 wt. (%) and were determined to need no further concentration prior to recycling. However the contents of Mn, Fe, Si and P in the fraction below 1.18 mm did not meet the chemical specifications for commercial manganese alloys, except for phosphorous. Optical microscopy of the fraction below 1.18 mm, showed that 87.95% of the FeSiMn corresponded to the alloy and that the slag content was 12.05%. For the HC-FeMn sample, 95.07% corresponded to the alloy and only 4.93% to the slag. These results revealed potential for gravity concentration and recycling, reducing the residues in about 95% and improving the process productivity.