EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    A hybrid multi-step sensitivity-driven evolutionary polynomial regression enables robust model structure selection.
    (2022) Gomes, Ruan Gonçalves de Souza; Gomes, Guilherme José Cunha; Vrugt, Jasper A.
    Evolutionary Polynomial Regression (EPR) has found widespread application and use for model structure development in engineering and science. This hybrid evolutionary approach merges real world data and explanatory variables to generate well-structured models in the form of polynomial equations. The simple and transparent models produced by this technique enable us to explore, via sensitivity analysis, the robustness of the derived models. Yet, existing EPR frameworks do not make explicit use of sensitivity analysis in the selection of robust and high-fidelity model structures. In this paper, we develop a multi-step sensitivity-driven method which combines the strengths of differential evolution and model selection via Monte Carlo simulation to explore the input–output relationships of model structures. In the first step, our hybrid approach automatically determines the optimum number of terms of the polynomial equations. In a subsequent step, our algorithm explores the mean parametric response of each explanatory variable used in the mathematical formulation to select a final model structure. Finally, in our selection of the most robust mathematical structure, we take explicit consideration of the prediction uncertainty of the simulated output. We illustrate and evaluate our EPR method for different engineering problems involving modeling and prediction of the moisture content and creep index of soils. Altogether, our results demonstrate that the use of sensitivity analysis as an integral part of model structure search and selection will lead to robust models with high predictive ability.
  • Item
    A dual search‐based EPR with self‐adaptive ofspring creation and compromise programming model selection.
    (2021) Gomes, Guilherme José Cunha; Gomes, Ruan Gonçalves de Souza; Vargas Júnior, Eurípedes do Amaral
    Evolutionary polynomial regression (EPR) is extensively used in engineering for soil properties modeling. This grey-box technique uses evolutionary computing to produce simple, transparent and well-structured models in the form of polynomial equations that best explain the observed data. A key task is then to determine mathematical structures for modeling physical phenomena and to select the optimal EPR model. This requires an algorithm to search through the model structure space and successfully produce feasible solutions that honor a set of statistical metrics. The complexity of EPR models increases greatly, however, with the number of polynomial terms used to tune these models. In this paper, we propose an alternative EPR for modeling complex soil properties. We implement a dual search-based EPR with self-adaptive ofspring creation as model structure search strategy and couple a compromise programming tool to select a model that is preferred statistically relative to models with diferent polynomial terms. We illustrate our method using real-world data to improve predictions of optimal moisture content and creep index for soils. Our results demonstrate that the models derived using the proposed methodology can predict soil properties with adequate accuracy, physical meaning and lower number of parameters and input variables.