EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Time-domain analysis of framed structures based on “exact” structural-property matrices for nonprismatic Timoshenko’s elements.
    (2022) Pillon, Fenando R.; Ribeiro, Iara Souza; Araújo, Francisco Célio de; Degenhardt, Richard
    This paper applies a unified process to calculate ”exact” (consistent) finite-element (FE) matrices for framed structures having nonprismatic elements and including shear- deformation and rotational-inertia effects. In this process, the exact expressions for the element stiffness and nodal-load coefficients result from applying the principle of virtual forces (PVF) at the element level. Rigidity values, determined at a certain number of cross sections in the frame element, are employed to describe how the corresponding rigidities vary along its length. For that, interpolation polynomials of different orders are consid- ered. Exact Timoshenko’s shape functions, built under the most general cases of rigidity variation, are used for evaluating the mass matrix coefficients. In the applications, com- plex 2D frames with nonprismatic elements are considered to simulate bridge structures under seismic excitation and a generic harmonic load. Comparisons with highly accurate response time-histories obtained by employing ANSYS (3D) solid-FE models are effected to verify the robustness of the proposed formulation.
  • Item
    A robustness-based design strategy for composite structures – probabilistic approach.
    (2014) Cunha, Fábio Ribeiro Soares da; Wille, Tobias; Degenhardt, Richard; Sinapius, Michael; Araújo, Francisco Célio de; Zimmermann, Rolf
    Purpose – The purpose of this paper is to present the probabilistic approach to a new robustness-based design strategy for thin-walled composite structures in post-buckling. Design/methodology/approach – Because inherent uncertainties in geometry, material properties, ply orientation and thickness affect the structural performance and robustness, these variations are taken into account. Findings – The methodology is demonstrated for the sake of simplicity with an unstiffened composite plate under compressive loading, and the probabilistic and deterministic results are compared. In this context, the structural energy and uncertainties are employed to investigate the robustness and reliability of thin-walled composite structures in post-buckling. Practical implications – As practical implication, the methodology can be extended to stiffened shells, widely used in aerospace design with the aim to satisfy weight, strength and robustness requirements. Moreover, a new argument is strengthened to accept the collapse close to ultimate load once robustness is ensured with a required reliability. Originality/value – This innovative strategy embedded in a probabilistic framework might lead to a different design selection when compared to a deterministic approach, or an approach that only accounts for the ultimate load. Moreover, robustness measures are redefined in the context of a probabilistic design.