EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Vibrational spectroscopy of the mineral meyerhofferite CaB3O3(OH)5 H2O - an assessment of the molecular structure.
    (2013) Frost, Ray Leslie; López, Andrés; Xi, Yunfei; Cipriano, Ricardo Augusto Scholz; Costa, Geraldo Magela da; Belotti, Fernanda Maria; Lima, Rosa Malena Fernandes
    Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5_H2O and occurs as white complex acicular to crude crystals with length up to _4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm_1 assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm_1 are attributed to BOH in-plane bending modes. Raman bands in the 900–1000 cm_1 spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm_1. The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.
  • Item
    The spectroscopic characterization of the sulphate mineral ettringite from Kuruman manganese deposits, South Africa.
    (2013) Frost, Ray Leslie; López, Andrés; Xi, Yunfei; Cipriano, Ricardo Augusto Scholz; Costa, Geraldo Magela da; Lima, Rosa Malena Fernandes; Granja, Amanda
    The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 ◦C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the _4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.