EM - Escola de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6

Notícias

A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    The application of high-temperature X-ray diffraction and infrared emission spectroscopy to the thermal decomposition of krohnkite.
    (2016) Testasicca, Leonardo Pena; Frost, Ray Leslie; Ruan, Xiuxiu; Lim, Jéssica; Belotti, Fernanda Maria; Cipriano, Ricardo Augusto Scholz
    High-temperature X-ray diffraction and infrared emission spectroscopy have been applied to measure the thermal stability of the sulphate mineral kro¨hnkite Na2Cu(SO4)2 2H2O. Kro¨hnkite shows a low thermal stability. The mineral decomposes into a complex mixture of sulphates below 500 C and sulphides below 650 C, before melting. Broad emission infrared bands at 3350 and 3105 cm-1 are assigned to the stretching vibration of the water units. The intensity of these two bands decreases as the temperature is raised. The intensity of these bands is lost by 250 C. The sharp IES band at 992 cm-1 is assigned to the m1 SO4 2- symmetric stretching vibration. Intensity in this band is lost by 200 C. New IES bands are noted. The important aspect of this work is the use of hightemperature X-ray diffraction to determine the thermal decomposition of a mineral, in this case krohnkite.
  • Item
    Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH).
    (2013) Frost, Ray Leslie; Xi, Yunfei; Cipriano, Ricardo Augusto Scholz; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; López, Andrés
    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm^-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm^-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm^-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.