EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
2 resultados
Resultados da Pesquisa
Item Insights into orogenic processes from drab schists and minor intrusions : Southern São Francisco Craton, Brazil.(2019) Moreira, Hugo Souza; Cassino, Lucas F.; Lana, Cristiano de Carvalho; Storey, Craig Darryl; Albert, CapucineMinor altered intrusions and drab retrogressed schists can easily be overlooked in geological studies but this contribution explores these rocks within the Archaean and Palaeoproterozoic southern São Francisco Craton (SSFC), Brazil using geological relationships and accessory mineral in situ analyses in the context of cratonic assembly. Three magmatic pulses are documented: i) Archaean and ii) Palaeoproterozoic felsic intrusions, both hosted by Archaean protoliths, and iii) Palaeoproterozoic felsic intrusions in Palaeoproterozoic supracrustal sequences. Archaean felsic intrusions confirm the Palaeoarchaean age of the mafic/ultramafic sequence of the Rio das Velhas Greenstone Belt and Rhyacian intrusions mark the collisional stage of the Mineiro Belt with the SFC at c. 2130 Ma. Greenstone belt schists show a wide distribution of rounded ‘soccer ball’ Archaean detrital and metamorphic zircon grains ranging in age from 3200 to 2750 Ma with an interpreted overprinting high-grade metamorphic event at c. 2700 to 2680 Ma. Most high-grade metamorphic rims have Th/U > 0.1, negative εHf(t) values and REE pattern consistent with eclogite/granulite metamorphic facies, reinforcing the hypothesis of a dehydrated-refractory crust formed during the stabilization of the SSFC, even though no such protoliths are preserved. This event links crustal thickening and partial melting of Archaean lower crust. Archaean rutile crystals from the greenstone belt schist were reset during the Palaeoproterozoic event but still preserve the early Archaean high-grade metamorphic signature. The presence of unstable ilmenite replaced by rutile in the schist, associated to felsic intrusions with the same age at c. 2130 Ma suggest high pressure, low temperature prograde metamorphism during the collisional stage of the Palaeoproterozoic orogen. Elongate and prismatic zircon grains from the Rhyacian intrusions have low εHf(t) signature and crystallised from partial melting of sedimentary protoliths. Accretionary events produced thicker and more differentiated crust by the end of Rhyacian time. Easily overlooked rocks in this study, when studied, have revealed a rich multi-event history of cratonic evolution.Item U–Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil.(2017) Martinez Dopico, Carmen Irene; Lana, Cristiano de Carvalho; Moreira, Hugo Souza; Cassino, Lucas F.; Alkmim, Fernando Flecha deBecause of its world-class iron ore deposits and promising Au and U mineralizations, the late Neoarchean to Paleoproterozoic Minas Basin (Minas Supergroup, SE of Brazil) is one of the best-studied basins in South America. However, the lack of datable interlayered volcanic rocks prevented discourse over ages of the strata, the sources and the nature of its ore deposits. In this paper, we present detrital zircon U– Pb age patterns coupled with Lu–Hf data for 18 samples, representing different stages of the Minas Basin evolution ( 2000 analyzed zircons). Age spectra for the main basal unit (Moeda Formation) show a classic rift-related detrital zircon pattern, characterized by multiple autochthonous sources, which in turn are much older than the age of deposition. Maximum age for the rifting event is constrained at ca. 2600 Ma. Detritus accumulated at the base of the Minas Supergroup were derived from Archean source rocks and their sedimentation was marked by differential uplift of the Archean crust, shortly after the 2730–2600 Ma high-K calc-alkaline magmatism (Mamona Event). The age of the BIF deposits is younger than 2600 Ma, most likely coinciding with the great oxygenation event between 2400 and 2200 Ma and the precipitation of banded iron deposits worldwide. Detrital zircons from the topmost units of the Minas strata suggest that tectonic inversion and closure of the basin took place at ca. 2120 Ma with the deposition of the synorogenic Sabará Group. Rhyacian zircon supply showing juvenile Hf signatures gives evidence of a late Rhyacian amalgamation between the Mineiro Belt and the craton. The eHf signatures support the hypothesis that the Archean crystalline crust of the craton was mostly built by crust–mantle mixing processes, with a successive decrease of eHf values in zircons crystallized after 3250 Ma and minor mantle-like additions after Paleoarchean times. Regionally, our dataset supports previous interpretations of a long-lived evolution of the southern São Francisco Craton comprising a succession of convergent island arcs, small microplate collisions, and development