EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
3 resultados
Resultados da Pesquisa
Item Numerical and theoretical investigation of bolted sleeve connections with rectangular hollow sections.(2023) Oliveira, Matheus Miranda de; Amparo, Lucas Roquete; Tanus, Lucas da Silva; Monteiro, Isabella Estevão; Alves, Vinicius Nicchio; Sarmanho, Arlene Maria CunhaThis article presents a theoretical and numerical study of bolted sleeve connections with rectangular hollow sections (RHS) under axial tension and compression. The geometric form of a hollow section provides resistance for high axial loads, torsion and combines effects, spreading its utilization in truss systems. In this context, the sleeve connections proposed explore these characteristics of RHS and offer an attractive aesthetic appearance for the continuity of elements. The bolted sleeve connection with RHS is formed by two outer tubes connected by an inner tube and staggered bolts. Herein, a parametric study was developed for identification of the failure modes in the connection. Finite element models with different geometric parameters and number of bolts were created in commercial software. The width, depth and thickness of RHS tubes and diameter of bolts were variated. In the theoretical/numerical/ parametric results, the yielding gross section failure, the fracture through the effective net area failure and the bearing failure were observed. These failure modes occurred in both outer and inner tubes. The load results were compared to determine the resistance capacity of sleeve connections. The theoretical formulations were evaluated for representation of the ultimate load of the failure modes.Item Behavior and design formulation of steel CHS with sleeve connections.(2021) Amparo, Lucas Roquete; Oliveira, Matheus Miranda de; Sarmanho, Arlene Maria Cunha; Xavier, Ellen Martins; Alves, Vinicius NicchioStructures with tubular profiles gain space in civil construction due to their excellent response under tension, compression, and torsion. They are widely used in structural trusses, especially in large lengths. The profiles have a limited size due to the manufacturing and transport process. Therefore, there is a need to use some mechanism to perform the joint of profiles and obtain the desired length. This work aims to develop a new type of bar splice in circular hollow section (CHS) connection called sleeve connection, composed of two tubes connected with another smaller diameter tube with bolts arranged in a line (staggered bolts). This research presents an experimental, numerical, and parametric study of sleeve connection in CHS under centric axial tension. A numerical model was developed using the finite element method (FEM) considering sleeve connection with staggered bolts. From the numerical results, it was possible to analyze the connection behavior and failure modes: yielding gross cross-section, fracture through the effective net area, bolt shear failure, bearing failure of the plate, and bolt bending failure. This way, formulations were proposed to predict the sleeve connections' behavior with staggered bolts as a function of the failure modes.Item Bearing failure in bolted sleeve connections with circular hollow sections under compression.(2020) Oliveira, Matheus Miranda de; Amparo, Lucas Roquete; Sarmanho, Arlene Maria Cunha; Pereira, Daniel José Rocha; Alves, Vinicius NicchioThis article analyzes sleeve connections between circular hollow sections. This type of connection is composed of two tubes connected by bolts to an inner tube with a smaller diameter, and explores the efficiency, aesthetics and resistance of hollow sections subjected to tension and compression. In previous researches, sleeve connections with aligned and crossed bolt dispositions and under axial tension were studied. Herein, the behavior of sleeve connections with aligned bolts and under compression was analyzed. A model to represent the connection using the finite element method was developed, which allowed a numerical analysis with geometric property variations. In the numerical/parametric results, bearing failure was observed in all cases, either in the outer or inner tube. Limiting the number of bolts to 6 and considering that connections have a lower outer thickness than the inner tube, a formulation was proposed to determine the ultimate bearing capacity of sleeve connections under compression and with bearing failure.