DEGEO - Departamento de Geologia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/8

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Unraveling the origin of the Parnaíba Basin : testing the rift to sag hypothesis using a multi-proxy provenance analysis.
    (2020) Cerri, Rodrigo Irineu; Warren, Lucas Veríssimo; Varejão, Filipe Giovanini; Marconato, André; Luvizotto, George Luiz; Assine, Mario Luis
    Syneclises are long-lived sedimentary basins characterized by complex subsidence and erosion histories. The premise that these geotectonic units evolve from initial rifting processes following thermal (or flexural) subsidence is widespread in the geologic sciences and, to this day, remains a controversial issue. Seeking to test this hypothesis, we proceeded a novel multi-proxy provenance study aiming to identify differences (and/or similarities) in the sedimentary signal and source areas of the Jaibaras (rift) and Parnaíba (sag) basins. We conducted a detailed analysis of trace elements geochemistry of detrital rutile grains, macroscopic gravel composition and paleocurrents from the sedimentary deposits of the Aprazível Formation (Ediacaran - Cambrian, top of Jaibaras Basin) and the Ipu Formation (Ordovician, basal unit of Parnaíba Basin). Our data reveal that important changes in source areas occurred between the end of the rifting and the beginning of the sag phase, reinforcing the hypothesis that the evolution of the Jaibaras and Parnaíba basins were not genetically related. Our results demonstrate that conglomerates of the rift sequence are predominantly composed of volcanic, sedimentary, and metamorphic angular to sub-angular clasts, pointing to diverse, nearby source areas. Contrastingly, conglomerates of the initial sag sequence have greater sedimentary maturity, with dominant rounded vein quartz clasts and other minor source contributions, which suggest distant source areas, showing a consistent paleocurrent direction towards NW. Indeed, the detrital rutile trace elements geochemistry demonstrates that the source areas of these two units were distinct, revealing an important decrease in the input of granulite facies and metamafic grains in the sag basin comparing with the rift succession. In conclusion, as well as paleomagnetic and geochronological studies, the provenance methods using a multi-proxy approach proved to be an effective and powerful technique for distinguishing modifications in the sedimentary signal between rift-to-sag sequences.
  • Item
    Contrasting provenance and timing of metamorphism fromparagneisses of the Araçuaí-Ribeira orogenic system, Brazil : hints for Western Gondwana assembly.
    (2017) Degler, Reik; Soares, Antônio Carlos Pedrosa; Dussin, Ivo Antonio; Queiroga, Gláucia Nascimento; Schulz, Bernhard
    The Araçuaí orogen and the Ribeira belt make up a complex Neoproterozoic-Cambrian orogenic system, the Araçuaí-Ribeira orogenic system(AROS) located fromthe eastern to southeastern Brazil. Along the AROS, the Ediacaran Rio Doce magmatic arc represents a geotectonic connection between the Araçuaí and the Ribeira orogenic domains. Although the nature and evolution of the Rio Doce plutonic rocks is regionally well established, it lacks detailed studies on the paragneisses found along the western and central regions of this magmatic arc. Besides information on the nature and provenance of their sedimentary protoliths, the paragneisses provide data to unravel the palaeogeographic scenario fromthe precursor to arc-related basins. Six samples of Al-rich gneisses covering a large AROS region were selected for electron microprobe (EMP) mineral analyses in order to obtain geothermobarometric data and monazite ages, as well as for Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) isotopic analyses on zircon (U-Pb, Lu-Hf) and monazite (U-Pb). The different age spectra fromdetrital zircon grains and contrasting Hf isotopic signatures suggest a complex sedimentary history. Located in thewestern sector of the study region, the samples RC-02 and RC-34, with an 80% age peak of detrital zircon grains from 2158 Ma to 1830 Ma, εHf(t) from −2.2 to −22.7, and Hf TDM model ages from 3530 Ma to 2440 Ma, suggest sediment sources located in the São Francisco craton basement. The samples RC-03, also fromthewestern sector, and RC-46 fromthe southern sector, have a more complex assemblage of detrital zircon grains with an 87% age peak from 987 Ma to 592 Ma, εHf(t) from +14.9 to −2.9, and Hf TDM model ages from 2220Ma to 720 Ma, indicating provenance from mainly juvenile sources of distinct ages. Candidates to be juvenile sources for RC-03 and RC-46 sedimentary protoliths are the Rhyacian Juiz de Fora and Pocrane complexes in the basement of the Rio Doce arc, the Neoproterozoic Rio Negro arc systemof the Ribeira belt, and AROS ophiolite complexes. Samples RC-30 and RC-38 from the eastern sector of the study region, with most detrital zircon ages between 650 Ma and 552 Ma and very negative εHf(t) (−25.3 to −16.5), suggest main sediment sources in the Rio Doce arc. By extending U-Pb analyses on metamorphic zircon and monazite, we have identified a complex timing of metamorphism, represented by metamorphic ages ranging from 621 Ma to 480 Ma, with the main collisional activity between 580Ma and 540 Ma. Geothermobarometric studies on garnet porphyroblasts, syn-kinematic to the D2 regional foliation, show a retrograde metamorphic path typical of continental collision belts, starting with P-T conditions of Tmax = 733 °C and Pmax = 6.43 kbar. Our data also suggest: i) the studied paragneisses represent distinct Neoproterozoic basin stages, shifting from passive to active margin settings; ii) if the Rio Negro arc system really provided sediments for the basin stage represented by the RC-03 and RC-46 paragneisses, it would have amalgamated with the AROS before 614 Ma; iii) the final amalgamation of Western Gondwana took place around 540 Ma in the focused region; iv) an important re-heating period (520–480 Ma) can be related to the AROS gravitational collapse, afterWestern Gondwana assembly.