DEGEO - Departamento de Geologia
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/8
Navegar
2 resultados
Resultados da Pesquisa
Item Metamorphic record of collision and collapse in the Ediacaran‐Cambrian Araçuaí orogen, SE‐Brazil : insights from P–T pseudosections and monazite dating.(2017) Peixoto, Eliza Inez Nunes; Alkmim, Fernando Flecha de; Soares, Antônio Carlos Pedrosa; Lana, Cristiano de Carvalho; Chaves, Alexandre de Oliveirahe Araçuaí orogen is the Brazilian counterpart of the Araçuaí‐West Congo orogenic system (AWCO), a component of the Ediacaran‐Cambrian orogenic network formed during the amalgamation of West Gondwana. The northwestern portion of the Araçuaí orogen is dominated by a succession of metasedimentary rocks made up of Meso‐ to Neoproterozoic rift, passive margin and syn‐orogenic sequences, locally intruded by post‐collisional granites. These sequences are involved in three distinct tectonic units, which from west to east are: the southern Espinhaço fold‐thrust system (SE‐thrust system), the normal‐sense Chapada Acauã shear zone (CASZ) and the Salinas synclinorium. Three deformation phases were documented in the region. The first two phases (D1 and D2) are characterized by contractional structures and represent the collisional development stage of the orogen. The third phase (D3) is extensional and currently viewed as a manifestation of orogenic collapse of the system. The distribution of the metamorphic mineral assemblages in the region characterizes two metamorphic domains. The M‐Domain I on the west, encompassing the SE‐thrust system and the CASZ, is marked by a syn‐collisional (syn‐D1) Barrovian‐type metamorphism with P–T conditions increasing eastwards and reaching ~8.5 kbar at ~650°C between 575 and 565 Ma. The M‐Domain II comprises the Salinas synclinorium in the hangingwall of the CASZ, and besides the greenschist facies syn‐collisional metamorphism, records mainly a Buchan‐type metamorphic event, which took place under 3–5.5 kbar and up to 640°C at c. 530 Ma. The northwestern Araçuaí orogen exhibits, thus, a paired metamorphic pattern, in which the Barrovian and Buchan‐type metamorphic domains are juxtaposed by a normal‐sense shear zone. Lithospheric thinning during the extensional collapse of the orogen promoted ascent of the geotherms and melt generation. A large volume of granites was emplaced in the high grade and anatectic core of the orogen during this stage, and heat advected from these intrusions caused the development of Buchan facies series over a relatively large area. Renewed granite plutonism, hydrothermal activities followed by progressive cooling affected the system between 530 and 490 Ma.Item The kinematic evolution of the Serra Central Salient, Eastern Brazil : a neoproterozoic progressive arc in northern Espinhaço fold-thrust belt.(2017) Bersan, Samuel Moreira; Danderfer Filho, André; Lagoeiro, Leonardo EvangelistaConvex-to-the-foreland map-view curves are common features in fold-thrust belts around cratonic areas. These features are easily identifiable in belts composed of supracrustal rocks but have been rarely described in rocks from relatively deeper crustal levels where plastic deformation mechanisms stand out. Several local salients have been described in Neoproterozoic marginal fold-thrust belts around the São Francisco craton. In the northern part of the Espinhaço fold-thrust belt, which borders the eastern portion of the São Francisco craton, both Archean-Paleoproterozoic basement rocks and Proterozoic cover rocks are involved in the so-called Serra Central salient. A combination of conventional structural analysis and microstructural and paleostress studies were conducted to characterize the kinematic and the overall architecture and processes involved in the generation of this salient. The results allowed us to determine that the deformation along the Serra Central salient occur under low-grade metamorphic conditions and was related to a gently oblique convergence with westward mass transport that developed in a confined flow, controlled by two transverse bounding shear zones. We propose that the Serra Central salient nucleates as a basin-controlled primary arc that evolves to a progressive arc with secondary vertical axis rotation. This secondary rotation, well-illustrated by the presence of two almost orthogonal families of folds, was dominantly controlled by buttress effect exert by a basement high located in the foreland of the Serra Central salient.