DEGEO - Departamento de Geologia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/8

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 11
  • Item
    Tectonically-induced strontium isotope changes in ancient restricted seas : the case of the Ediacaran-Cambrian Bambuí foreland basin system, east Brazil.
    (2021) Guacaneme, Cristian; Babinski, Marly; Bedoya Rueda, Carolina; Santos, Gustavo Macedo de Paula; Caetano Filho, Sergio; Amaral, Matheus Henrique Kuchenbecker do; Reis, Humberto Luis Siqueira; Trindade, Ricardo Ivan Ferreira da
    The Bambuí Group is a marine sedimentary record of an intracratonic foreland basin developed at the terminal Ediacaran and early Cambrian during the assembly of West Gondwana. Here we present a basin-scale high- resolution Sr isotope stratigraphy for the basal Bambuí Group, aiming to understand the spatial and temporal var- iations of the 87Sr/86Sr ratios and to explore the controls over the Sr isotope system in intracontinental marine environments. Assessment of the stratigraphic evolution of both Sr concentrations and Sr isotopes shows a major increase in Sr/Ca ratios (up to 0.004) and a decrease in the 87Sr/86Sr ratios from 0.7086 to 0.7076 in the high stand system tract of the basal 2nd-order sequence. These changes precede a large positive δ13C excursion typically found across the basin in the middle Bambuí Group. The high variability of both 87Sr/86Sr and Sr/Ca ra- tios was not caused by globally uniform changes in isotopic compositions of seawater, but rather likely reflect marine restriction and paleogeographic changes of the depositional environments at basin scale. This would re- sult from the tectonic uplift of Neoproterozoic orogenic belts around the São Francisco craton, which generated an isolated foreland marine basin. Compared to the global ocean, such a smaller intracontinental reservoir would be more sensitive to the Sr isotope composition from the different rock sources. We suggest that changes on the balance between carbonate production and accommodation associated with tectonically-related flexural subsi- dence progressively modified the continental drainage patterns, sedimentary sources and the chemical weathering regimes, altering the strontium influxes and isotopic compositions of the seawater in the early Bambuí basin cycle. Similar anomalies in the strontium isotope record are also recorded in coeval marine basins across West Gondwana and suggest that tectonics might have played an important role on seawater chemistry at the Neoproterozoic-Paleozoic transition.
  • Item
    A large epeiric methanogenic Bambuí sea in the core of Gondwana supercontinent?
    (2021) Caetano Filho, Sergio; Sansjofre, Pierre; Ader, Magali; Santos, Gustavo Macedo de Paula; Guacaneme, Cristian; Babinski, Marly; Bedoya Rueda, Carolina; Amaral, Matheus Henrique Kuchenbecker do; Reis, Humberto Luis Siqueira; Trindade, Ricardo Ivan Ferreira da
    Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time, as long as they are acquired from waters where the dis- solved inorganic carbon (DIC) is in isotope equilibrium with the atmospheric CO2. However, in shallow water platforms and epeiric settings, the influence of local to regional parameters on carbon cycling may lead to DIC isotope variations unrelated to the global carbon cycle. This may be especially true for the terminal Neo- proterozoic, when Gondwana assembly isolated waters masses from the global ocean, and extreme positive and negative carbon isotope excursions are recorded, potentially decoupled from global signals. To improve our understanding on the type of information recorded by these excursions, we investigate the paired δ13Ccarb and δ13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior: the basal Bambuí Group. This succession represents a 1st-order sedimentary sequence and records two major δ13Ccarb excursions in its two lowermost lower-rank sequences. The basal cap carbonate interval at the base of the first sequence, deposited when the basin was connected to the ocean, hosts antithetical negative and positive excursions for δ13Ccarb and δ13Corg, respectively, resulting in Δ13C values lower than 25‰. From the top of the basal sequence upwards, an extremely positive δ13Ccarb excursion is coupled to δ13Corg, reaching values of þ14‰ and 14‰, respectively. This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambuí Group that occurs with only minor changes in Δ13C values, suggesting change in the DIC isotope composition. We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles. This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis, favored by the basin restriction. The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere, resulting in a13C-enriched DIC influenced by methanogenic CO2. Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere, potentially affecting both the global carbon cycle and the climate.
  • Item
    A large epeiric methanogenic Bambuí sea in the core of Gondwana supercontinent?
    (2021) Caetano Filho, Sergio; Sansjofre, Pierre; Ader, Magali; Santos, Gustavo Macedo de Paula; Guacaneme, Cristian; Babinski, Marly; Bedoya Rueda, Carolina; Amaral, Matheus Henrique Kuchenbecker do; Reis, Humberto Luis Siqueira; Trindade, Ricardo Ivan Ferreira da
    Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time, as long as they are acquired from waters where the dissolved inorganic carbon (DIC) is in isotope equilibrium with the atmospheric CO2. However, in shallow water platforms and epeiric settings, the influence of local to regional parameters on carbon cycling may lead to DIC isotope variations unrelated to the global carbon cycle. This may be especially true for the terminal Neoproterozoic, when Gondwana assembly isolated waters masses from the global ocean, and extreme positive and negative carbon isotope excursions are recorded, potentially decoupled from global signals. To improve our understanding on the type of information recorded by these excursions, we investigate the paired δ13Ccarb and δ13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior: the basal Bambuí Group. This succession represents a 1st-order sedimentary sequence and records two major δ13Ccarb excursions in its two lowermost lower-rank sequences. The basal cap carbonate interval at the base of the first sequence, deposited when the basin was connected to the ocean, hosts antithetical negative and positive excursions for δ13Ccarb and δ13Corg, respectively, resulting in Δ13C values lower than 25‰. From the top of the basal sequence upwards, an extremely positive δ13Ccarb excursion is coupled to δ13Corg, reaching values of þ14‰ and 14‰, respectively. This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambuí Group that occurs with only minor changes in Δ13C values, suggesting change in the DIC isotope composition. We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles. This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis, favored by the basin restriction. The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere, resulting in a13C-enriched DIC influenced by methanogenic CO2. Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source.
  • Item
    Rare earth elements in the terminal Ediacaran Bambuí Group carbonate rocks (Brazil) : evidence for high seawater alkalinity during rise of early animals.
    (2020) Santos, Gustavo Macedo de Paula; Caetano Filho, Sergio; Enzweiler, Jacinta; Navarro, Margareth Sugano; Babinski, Marly; Guacaneme, Cristian; Amaral, Matheus Henrique Kuchenbecker do; Reis, Humberto Luis Siqueira; Trindade, Ricardo Ivan Ferreira da
    Rare earth elements plus yttrium (REY) mass fractions of ancient carbonate rocks are used to track changes in chemistry of past seawater. Here we investigate REY patterns in two carbonate sections from the Ediacaran Bambuí Group, São Francisco Basin (Brazil), which comprise its two lowermost transgressive-regressive secondorder sedimentary sequences. Shale normalised distributions vary with the sequence stratigraphy framework. In the basal 2nd-order sequence, carbonate samples from the basal sequence transgressive systems tract display light REY (LREY) distributions slightly depleted to enriched that reflect input of freshwater, possibly in a post glacial episode. Upwards, carbonate rocks from the early highstand systems tract (EHST) yielded LREY enriched distributions, which progressively turns into LREY shale normalized depleted distributions on samples from the late highstand systems tract (LHST). This portion of the sequence also displays Y positive anomaly in some cases. Carbonate samples from the upper second-order sequence do not display coherent patterns. Ce/Ce* values > 1 in most samples throughout the two sections suggest permanent anoxia of seawater. The REY change from the EHST to LHST in the basal sequence marks an important paleoenvironmental overturn in the basin, with increasing alkalinity in seawater driving REY fractionation and LREY depletion. Confinement of the basin in the inner areas of West Gondwana due the uplift of marginal neoproterozoic orogens probably changed the weathering style of source areas to more congruent, thus delivering a higher ionic influx to a restricted setting, increasing alkalinity during LHST. Cloudina sp. fragments were reported in this stage of the Bambuí Group and in carbonate rocks with high Sr mass fractions in other West Gondwana basins, supporting the hypothesis that the high alkalinity of seawater during late Ediacaran may have driven the appearance of the first biomineralizing organisms.
  • Item
    Sequence stratigraphy and chemostratigraphy of an Ediacaran-Cambrian foreland-related carbonate ramp (Bambuí Group, Brazil).
    (2019) Caetano Filho, Sergio; Santos, Gustavo Macedo de Paula; Guacaneme, Cristian; Babinski, Marly; Bedoya Rueda, Carolina; Peloso, Marília; Amorim, Kamilla Borges; Afonso, Jhon Willy Lopes; Amaral, Matheus Henrique Kuchenbecker do; Reis, Humberto Luis Siqueira; Trindade, Ricardo Ivan Ferreira da
    In the terminal Neoproterozoic, drastic climate changes associated with biological innovations are coupled to isotope and elemental geochemical anomalies. However, lateral variability and local depositional controls may affect global geochemical signals, which can only be tracked through a proper stratigraphic/paleogeographic assessment. Here, we investigate the sequence stratigraphy and chemostratigraphy of the basal units of the Bambuí Group, central-east Brazil. This stratigraphic unit records a foreland basin system developed during the Ediacaran-Cambrian West Gondwana assembly and represents a 1st-order sequence, in which the two lowermost 2nd-order sequences record major geochemical disturbances. The first 2nd-order sequence started with the deposition of a transgresive systems tract, possibly in a postglacial scenario, which accompanies a negative-topositive δ13Ccarb excursion. The early highstand systems tract represents the establishment of a marine carbonate ramp throughout the basin. In terms of chemostratigraphy, it corresponds to a δ13Ccarb plateau close to 0‰ and Sr/Ca ratios around 0.001. The late highstand stage coincides with a remarkable increase in Sr content and Sr/Ca ratios at basinal scale. Occurrences of the Cloudina sp. late Ediacaran index fossil were reported in this stage. An erosional unconformity associated with a dolomitic interval, locally including subaerial exposure features, marks the top of the first 2nd-order sequence. This sequence boundary heralds an abrupt increase in δ13Ccarb values, up to +14‰. These extremely high δ13Ccarb values and high Sr/Ca ratios persist throughout the overlying sequence, as a result of progressive and enhanced restriction of the foreland basin system. Basin restriction at this stage has implications for the paleontological and chemostratigraphic record of epicontinental basins of the West Gondwana in the terminal Ediacaran. Late Ediacaran Sr-rich intervals in these basins show unusually nonradiogenic 87Sr/86Sr ratios, which may represent local depositional controls and deviations from the modern oceanographic models. Physiographic barriers and stressful conditions likely represented extreme environments for metazoan colonization.
  • Item
    The Ribeirão da Folha ophiolite-bearing accretionary wedge (Araçuaí orogen, SE Brazil) : new data for Cryogenian plagiogranite and metasedimentary rocks.
    (2020) Amaral, Leandro Silva dos Santos; Caxito, Fabrício de Andrade; Soares, Antônio Carlos Pedrosa; Queiroga, Gláucia Nascimento; Babinski, Marly; Trindade, Ricardo Ivan Ferreira da; Lana, Cristiano de Carvalho; Chemale Júnior, Farid
    The Araçuaí orogen and West Congo belt make up a singular confined orogenic system, embraced by the San Francisco – Congo craton: the AWCO. It includes a southern sector with ophiolite bodies and magmatic arc, and a northern sector free of them, suggesting the precursor basin was an embayment partially floored by oceanic crust. The northernmost ophiolitic rock-assemblage found in the Araçuaí orogen comprises metamafic and meta-ultramafic rocks with signatures of ocean-floor magmas, and associated pelagic to oceanic metasedimentary rocks of the Ribeirão da Folha Formation. Although tectonically dismembered and metamorphosed, those rocks resemble the classical ophiolite pseudostratigraphy. The Ribeirão da Folha Formation comprises rocks expected to be found in the upper units of an ophiolite edifice, like Al-rich micaschist (pelagic pelite), graphite-rich schist (black shale), sulfide-bearing metachert, diopsidite with massive sulfide, and banded iron formations (chemical-exhalative sediments), and sulfide-bearing fine-grained ortho-amphibolite with thin metachert intercalations (mafic volcanic unit). That formation hosts tectonic slices of banded ortho-amphibolite (dolerite) with plagiogranite veins, and coarse-grained massive ortho-amphibolite (gabbro), representing dismembered slivers from deeper mafic units, and slices of meta-ultramafic rocks from the deepest ophiolite units. Zircon crystals from a plagiogranite vein yielded the U-Pb SHRIMP age of 645 ± 10 Ma, providing a new time constraint for ocean-floor emplacement. Micaschist samples show chemical attributes typical of distal passive margin pelites. Among three progressive deformation phases, the main ductile phase (Dn) shows kinematic indicators related to top to SW mass transport, associated with intermediate P-T (St, Ky, Sil) metamorphic zoning. Although the few youngest grains of detrital zircon from three siliciclastic samples have distinct ages (around 599 Ma, 741 Ma, and 816 Ma), their wide-range age spectra and Hf signatures suggest similar sediment sources. The wide lithological variety and stratigraphic complexity along with the intricate tectonic framework of the Ribeirão da Folha region, comprising thrust slices of ophiolitic rocks tectonically interleaved with older rift-related rocks, characterize an accretionary wedge that was scrapped off the subducted slab and involved in collisional tectonics, marking the AWCO suture zone for some 250 km between the Guanhães basement block (lower plate) and Rio Doce magmatic arc (upper plate).
  • Item
    A Neoproterozoic hyper-extended margin associated with Rodinia's demise and Gondwana's build-up : the Araguaia Belt, central Brazil.
    (2019) Hodel, F.; Trindade, Ricardo Ivan Ferreira da; Macouin, Melina; Meira, V.T.; Dantas, Elton Luiz; Paixão, Marco Antonio Pires; Rospabé, M.; Castro, Marco Paulo de; Queiroga, Gláucia Nascimento; Alkmim, Ana Ramalho; Lana, Cristiano de Carvalho
    The Araguaia Belt encloses a poorly constrained Pan-African (Brasiliano Cycle) continental suture marked by a series of (~750 Ma) ophiolitic units which, when properly characterized, could provide important informations on its geological history, closely linked with the Rodinia demise and further western Gondwana amalgamation. We present new bulk-rock and mineral major and trace element compositions for these ultramafic and mafic units. They mainly consist in fully serpentinized harzburgite, scarce dunite lenses and chromite pods, tectonically overlain by basaltic pillow lavas. Low Al2O3/SiO2 ratios (0.01 to 0.06), rather highMgO concentrations (42.28 to 45.29 wt%) and spinels' Cr# and Mg# ratios comprised between 0.36 and 0.51 and 0.59 and 0.72, respectively, indicate a depleted oceanic-like protolith. MORB-peridotite interactions are evidenced both by pyroxenite, olivine gabbro and diabase occurrences in the serpentinites and by high TiO2 (up to 0.42 wt%) contents in spinels from some Serra do Quatipuru serpentinites. These observations support that the Araguaia Belt ophiolitic bodies are the remnants of the upper mantle section of a MOR or subcontinental lithosphere. The serpentinites wholerock REE content can be modeled as resulting from a dry partial melting involving 14 to 24% of melt extraction, coupled with refertilization by fertile melts, generated deeper in the mantle. Such an oceanic-like setting is also supported by the N-MORB signature of Serra do Tapa and Morro do Agostinho pillow lavas basalts. All together, these results tend to infirm the supra-subduction zone (SSZ) setting previously proposed for these ophiolitic units. Important LILE, B and Li enrichments in the serpentinites likely result from a metasomatic event involving sediments-derived fluids that occurred during the obduction of the units on the Amazonian Craton. Our results combined with (1) the apparent scarcity of igneous crustal rocks, (2) the proximal nature of the metasedimentary rocks hosting the ophiolitic units, and (3) the occurrences of Amazonian Craton fragments eastward of the ophiolitic bodies, allow us to propose that the Araguaia Belt comprises a fossil ocean-continent transition (OCT) accreted on the eastern border of the Amazonian Craton.
  • Item
    Geochronological constraints on the age of a Permo–Triassic impact event : U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil.
    (2012) Tohver, Eric; Lana, Cristiano de Carvalho; Cawood, Peter Anthony; Trindade, Ricardo Ivan Ferreira da; Yokoyama, Elder; Souza Filho, Carlos Roberto de; Marangoni, Yára Regina
    Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the 40Ar/39Ar ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ 40Ar/39Ar spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impactgenerated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U–Pb ages that yield a “Concordia” age of 247.8 ± 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U–Th–Pb dating of neocrystallized monazite and 40Ar/39Ar step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The 206Pb/238U age of 254.5 ± 3.2 Ma (2r error) and 208Pb/232Th age of 255.2 ± 4.8 Ma (2r error) of monazite, together with the inverse, 18 point isochron age of 254 ± 10Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 ± 2.5 Ma (0.99%, 2r error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo–Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana´–Karoo Basin may have been substantial.
  • Item
    Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil : age, provenance and correlations with the São Francisco craton and West Congo belt.
    (2012) Babinski, Marly; Soares, Antônio Carlos Pedrosa; Trindade, Ricardo Ivan Ferreira da; Martins, Maximiliano de Souza; Noce, Carlos Maurício
    Glacigenic diamictite successions of the Macaúbas Group are widespread in the western domain of the Araçuaí orogen, east of the São Francisco craton (Brazil). Diamictites also occur on this craton and in the African counterpart of the Araçuaí orogen, theWest Congo belt. Detrital zircon grains fromthe matrix of diamictites and sandstones from the Macaúbas Group were dated by the U–Pb SHRIMP technique. The geochronological study sets the maximum depositional age of the glacial diamictites at 900 Ma, and indicates multiple sources for the Macaúbas basin with ages ranging from 900 to 2800Ma. Sm–Nd TDM model ages, determined on whole rock samples, range from 1.8 Ga to 2.5 Ga and get older up-section. Comparison of our data with those from the cratonic area suggest that these glacial deposits can be correlated to the Jequitaí and Carrancas diamictites in the São Francisco craton, and to the Lower Mixtite Formation of the West Congolian Group, exposed in Africa. The 900–1000 Ma source is most probably represented by the Zadinian–Mayumbian volcanic rocks and related granites from the West Congo belt. However, one of the most voluminous sources, with ages in the 1.1–1.3 Ga interval, has not been detected in the São Francisco-Congo craton. Possible sources for these grains could occur elsewhere in Africa, or possibly from within the Brasília Belt in western central Brazil.
  • Item
    Shaking a methane fizz : seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record.
    (2013) Tohver, Eric; Cawood, Peter Anthony; Riccomini, Claudio; Lana, Cristiano de Carvalho; Trindade, Ricardo Ivan Ferreira da
    The Late Permian and Early Triassic periods are marked by large fluctuations in the carbon isotope record, but the source(s) of the disturbance to the global carbon cycle and the link to the end-Permian mass extinction arewidely debated. This contribution explores the possible isotopic effects of an impact event into the hydrocarbon-rich rocks of the Paraná–Karoo Basin. Recent U–Pb and 40Ar/39Ar dating of the 40 km Araguainha impact structure of central Brazil reveals an age of 254.7 ± 2.5 Ma (2σ error) for this event. The calculated energy (10^5–10^6 MT of TNT equivalent) released by this impact is less than threshold values of 10^7–10^8 MT TNT equivalent for global mass extinctions. Thus, the Araguainha crater is unlikely to have been the cause of the end-Permian biotic crisis. However, the combined seismic effects from the impact itself and the post-impact collapse of the 20–25 km diameter transient crater to its present 40 km diameter would result in large magnitude earthquakes (Mw 9.3–10.5) and tsunamis in the shallow marine Paraná–Karoo Basin. Slope failure and sediment liquefaction are predicted to have occurredwithin a 700–3000 km radius of the crater, causing large-scale release of methane from organic-rich sediments of this basin, including the oil shale horizons of the Iratí Formation. New geological evidence for seismicity in the Paraná Basin at the time of impact is presented, together with a compilation of existing carbon isotope data from the Paraná Basin, which demonstrate a widespread pattern of disturbance consistent with the release of methane. These two datasets suggest that both seismicity and methane release took place within ca.1000 km of the impact site, with mass balance calculations suggesting ca. 1600 GT of methane were released into the atmosphere at this time. Methane release at this scale would have significant climate effects and would contribute to a sharp (<1 ka) negative shift in δ^13 C values at the time of the impact, which should be distinguishable from the more gradual shift over 0.5–1 Ma caused by contemporaneous intrusion of the Siberian traps.