DEGEO - Departamento de Geologia
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/8
Navegar
5 resultados
Resultados da Pesquisa
Item Stratigraphy and geochronological constraints of the Serra Sul formation (Carajás Basin, Amazonian Craton, Brazil).(2020) Rossignol, Camille Yann; Rego, Eric Siciliano; Narduzzi, Francesco; Teixeira, Lívia; Ávila, Janaína Nunes; Silva, Marco Antônio Leandro; Lana, Cristiano de Carvalho; Philippot, PascalThe Carajás Basin, Amazonian Craton, hosts extensive Neoarchean to Paleoproterozoic sedimentary archives, which are still poorly constrained regarding their depositional settings, ages, and type of basin in which they have been deposited. In this study, we performed detailed sedimentological investigations and U-Pb dating of detrital zircon in four drill cores intercepting the recently defined Serra Sul Formation. Our data show that this formation corresponds to various shallow to deep subaqueous environments. Shallow water environments are characterized by local occurrences of microbially-mediated structures, while deep water environments are characterized by polymictic conglomerates resulting from the mixing of materials of different origins during downslope debris flow. Both sedimentary facies and common occurrence of syn-sedimentary deformations attest for recurrent slope instabilities. Geochronological investigations allow to define a maximum depositional age of 2684 ± 10 Ma, that is several tens million years younger than other Neoarchean sedimentary units of the Carajás Basin. Major peaks in age distribution indicate that the Serra Sul Formation derives from local sources that constitute the basement of the Carajás Basin. The infilling of the Carajás Basin by local sources, together with sedimentary facies and depositional environments attesting for slope instabilities, suggest that the Serra Sul Formation was deposited during an active extensional tectonic phase. Such Neoarchean to early Paleoproterozoic tectonic setting compares with those documented in many other cratons worldwide and suggests that it could correspond to the break-up of one of the first documented supercontinent.Item Paleoproterozoic sources for Cordilleran-type Neoproterozoic granitoids from the Araçuaí orogen (SE Brazil) : constraints from Hf isotope zircon composition.(2020) Schannor, Mathias; Lana, Cristiano de Carvalho; Mazoz, Ariela Oliveira; Narduzzi, Francesco; Cutts, Kathryn Ann; Fonseca, Marco AntônioThe Araçuaí orogen of SE Brazil exposes numerous amounts of magnesian, metaluminous, calc-alkaline, and medium- to high-K granitoid batholiths that were emplaced during early convergence between the São Francisco and Congo cratons during West Gondwana assembly in the late Neoproterozoic. Previously proposed sources for these pre-collisional granitoids include the Paleoproterozoic basement and mantle-derived magma based on isotopic signatures, abundant microgranular enclaves and contemporaneous mafic intrusions. Zircons from migmatitic basement gneiss, a noritic intrusion and five granitoid intrusions were analysed for U–Pb–Hf isotopes to evaluate their magma source. Paleoproterozoic migmatites represent addition of juvenile crust in an accretionary orogenic setting at ca. 2.2–2.0 Ga evidenced by their positive zircon εHf values. The Hf isotopic composition of zircon from pre-collisional granitoids has a large range of negative εHf values between −28.8 and −1.7 indicating crustal protoliths. This range of unradiogenic Hf isotopic compositions is explained by inefficient mixing of magmas derived from felsic and mafic Paleoproterozoic sources that hybridised during incremental growth of the plutons. Zircon grains of contemporaneous mafic intrusions display slightly higher, yet enriched, Hf isotopic compositions consistent with crustal contamination of mantle magmas. The new Hf isotope data, integrated with other chemical and isotopic evidence, suggest derivation of the pre-collisional granitoids from lower crustal sources of the Paleoproterozoic basement, with only minor contributions from mantle-derived magmas. Thus, magmatism of the Araçuaí orogen related to the assembly of West Gondwana was dominantly a crustalreworking event.Item Genesis and evolution of a neoproterozoic magmatic arc : the cordilleran-type granitoids of the Araçuaí Belt, Brazil.(2018) Narduzzi, Francesco; Nalini Júnior, Hermínio Arias; Farina, Federico; Lana, Cristiano de Carvalho; Stevens, Gary; Nalini Júnior, Hermínio Arias; Tohver, Eric; Heilbron, Monica da Costa Pereira Lavalle; Queiroga, Gláucia Nascimento; Cipriano, Ricardo Augusto ScholzThe Araçuaí orogen (SE Brazil) is one of the largest (350,000 km2 ) and long-lived (ca. 630 – 480 Ma) granitic province in the world. The peculiarity of this Orogen is its wide variety of granitoids recording mid- to lower crustal P - T conditions that allow direct investigation of petrological processes occurring in the deepest part of the continental crust. This study investigates the field, textural, geochemical, geochronological and isotopic evolution of the pre-collisional Galiléia Batholith outcropping in the central part of the Araçuaí orogen. This metaluminous to slightly metaluminous (ASI = 0.97– 1.07) batholith, is a large is (ca. 15,000 km2 ), Neoproterozoic (ca. 632–550 Ma) weakly foliated, calc-alkaline, granitoid body characterized by the widespread occurrence of grossular-rich magmatic garnet and magmatic epidote. This is a rare mineral association in Cordilleran-I-type granitoids and of special petrogenetic significance. Field, petrographic, and mineral chemistry evidence indicate that garnet, epidote, biotite as well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and trace element composition between the Galiléia and other garnetfree cordilleran-type granitoids worldwide. Thus the uncommon garnet+epidote parageneses are related to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison between the mineral assemblages and mineral compositions from this study and those recorded in crystallization experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic rocks and granitoids, indicates that the supersolidus coexistence of grossularrich garnet, epidote and white mica is consistent with magma crystallization at pressures greater than 0.8 GPa (above 25 km depth). This indicates that the Galiléia batholith was assembled in the lower crust during the accretionary/collisional stages of the Neoproterozoic Brasiliano Orogeny. It is evident that this granitic body represents a natural laboratory for studying the history of a lower crustal magma reservoir. Indeed the lifetime of deep magma chambers and the duration of magmatic activity in them remains a puzzle, contrary to young upper crustal magmatic systems. Despite being homogeneous with respect to mineralogy/texture and major/trace elements, all samples from the central part of the batholith record extreme variability in U-Pb magmatic ages from ca. 630 to 555 Ma. Trace element geochemistry and Hf isotopes from the igneous zircons – here interpreted as autocrysts (ca. 555 – 560 Ma) and antecrysts (> 560 Ma) – are all consistent with an open-system crystallization, rather than a simple cooling following fractional crystallization at the level of magma emplacement. We interpret the age variability recorded by the Galiléia samples as the result of a long-lived, uninterrupted injection of magmas of similar composition during assembly of the batholith. Such continuous injections of magma took place in the lower crust, keeping the system above its solidus through the 80 Ma of zircon crystallization. Unradiogenic 176Hf/177Hf and 143Nd/144Nd isotopic values of the Galileía samples indicate no direct mixing with mantle-derived magmas during the assembly and growth of the Galiléia batholith. This explains the scarcity of mafic products in the region. All of these characteristics need a more suitable geodynamic scenario. Indeed mineral textural, geochronological and isotopic similarities with other younger and older granitic plutons constructed within accretionary / fore-arc settings, better explain the characteristics showed by the Galiléia granitoids. Thus it is suggested that this giant batholith was assembled in an accretionary prism during the Brasiliano Orogenic stages. Eventually, it is likely that during the Brasiliano/Pan-African orogeny, accretionary prism, fore- and back–arc setting were sites of voluminous silicic magmatism and commonplaces for the stabilization of continental crust and its differentiation.Item Archean magmatic-hydrothermal fluid evolution in the Quadrilátero Ferrífero (SE Brazil) documented by B isotopes (LA MC-ICPMS) in tourmaline.(2018) Albert, Capucine; Lana, Cristiano de Carvalho; Gerdes, Axel; Schannor, Mathias; Narduzzi, Francesco; Queiroga, Gláucia NascimentoIn the Archean Quadrilátero Ferrífero district (SE Brazil), tourmaline occurs as a major constituent in a leucogranitic intrusion and numerous pegmatitic/aplitic veins within magmatic basement complexes, as well as in quartzo-feldspathic veins, in quartz-tourmaline rocks (tourmalinites) and as disseminated grains in the surrounding greenstone belt metasediments. The chemical and boron isotope composition of these tourmalines was analysed by electron microprobe and LA MC-ICP-MS to determine the origin of the fluids involved and to shed light on the hydrothermal evolution of the region. The tourmalines exhibit an overall decrease in Fe/(Fe + Mg) ratio and a net increase in Cr (up to 0.75 wt%) from tourmaline hosted in the leucogranite, the quartzo-feldspathic veins, the tourmalinites to the disseminated grains in the schists. These variations mirror the bulk composition of the host schists, and illustrate a strong protolith control on tourmaline major element composition. The full range of tourmaline δ11B is from −27.1 to −9.2‰, with a major cluster between −12 and −19‰, which includes the magmatic tourmaline in the leucogranite (−15.2 to −12.5‰). Most of these isotope compositions can be reconciled with a model involving tourmaline growth from late-stage exsolved magmatic fluids percolating through the magmatic basement and into the nearby metasediments. This model agrees well with the trends of major element compositions, as well as with the critical observation that tourmaline occurrence is restricted to the vicinity of the basement complexes. δ11B values lower than ~−19‰ in our dataset are beyond the reach of isotope fractionation during magmatic fluid exsolution and temperature decrease, and suggest the presence of a distinct fluid component. We propose that an isotopically light fluid was released from mica breakdown in the country rocks during local upper amphibolite facies metamorphism in the dome border shear zone.Item Magmatic garnet in the Cordilleran-type Galiléia granitoids of the Araçuaí belt, Brazil : evidence for crystallization in the lower crust.(2017) Narduzzi, Francesco; Farina, Federico; Stevens, Gary; Lana, Cristiano de Carvalho; Nalini Júnior, Hermínio AriasMagmatic garnet, together with epidote, is a rare mineral association in cordilleran-I-type granitoids and of special petrogenetic significance. The metaluminous to slightly peraluminous (ASI = 0.97–1.07) Galiléia batholith (Brazil) is a large (ca. 30,000 km2), Neoproterozoic (ca. 632–570 Ma) weakly foliated calc-alkaline granitoid body, characterized by the widespread occurrence of garnet (grossular 25–43 mol%) and epidote (pistacite 9.3–22.7 mol%). Field, petrographic and mineral chemical evidence indicates that garnet, epidote, biotite as well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and trace element composition between the Galiléia granitoids and other garnet-free cordilleran-type granitoids worldwide. This evidence strongly suggests that the origin of the uncommon garnet+epidote parageneses is related to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison between the mineral assemblages andmineral compositions fromthis study and those recorded in crystallization experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic rocks and granitoids, indicates that the supersolidus coexistence of grossular-rich garnet, epidote and white mica is consistentwith magma crystallization at pressures greater than 0.8 GPa (above 25 km depth) and at temperatures below 700 °C, i.e. near the water saturated solidus. Furthermore, resorption textures around garnet (plagioclase ± quartz coronas) and epidote suggest that these minerals have been partially consumed prior to complete crystallization. These findings demonstrate that at 630 Ma the crust underneath the Araçuaí Orogen was already at least 25–30 km thick and relatively cool. However, this contrasts with the marked high heat flow registered from the neighbour Carlos Chagas Batholith located 50 km to the east. In fact such granitoids record granulite-facies metamorphism at the same pressure and time (ca. 570 Ma) of Galiléia granitoids crystallization. Thus, a more suitable geodynamic scenario is required in order to explain these two contrasting thermal regimes within the same orogen. Eventually, field, petrographic and mineral chemical analogies with similar garnet-bearing granitoids located in the fore-arc settings of the British Columbia subduction zone, possibly imply that the Galiléia granitoids represent “rare” garnet- and epidote-bearing metaluminous Cordilleran-Itype granites which can only form in a fore-arc setting.