DEGEO - Departamento de Geologia
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/8
Navegar
2 resultados
Resultados da Pesquisa
Item Radiation-induced defects in montebrasite : an electron paramagnetic resonance study of O – hole and Ti3+ electron centers.(2020) Toledo, José Roberto de; Gonçalves, Raphaela de Oliveira; Dias, Lorena Nunes; Chaves, Mario Luiz de Sá Carneiro; Karfunkel, Joachim; Cipriano, Ricardo Augusto Scholz; Pinheiro, Mauricio Veloso Brant; Krambrock, Klaus Wilhelm HeinrichMontebrasite is a lithium aluminum phosphate mineral with the chemical formula LiAlPO4(Fx,OH1–x) and considered a rare gemstone material when exhibiting good crystallinity. In general, montebrasite is colorless, sometimes pale yellow or pale blue. Many minerals that do not have colors contain hydroxyl ions in their crystal structures and can develop color centers after ionization or particle irradiation, examples of which are topaz, quartz, and tourmaline. The color centers in these minerals are often related to O– hole centers, where the color is produced by bound small polarons inducing absorption bands in the near UV to the visible spectral range. In this work, colorless montebrasite specimens from Minas Gerais state, Brazil, were investigated by electron paramagnetic resonance (EPR) for radiation-induced defects and color centers. Although γ irradiation (up to a total dose of 1 MGy) did not visibly modify color, a 10 MeV electron irradiation (80 MGy) induced a pale greenish-blue color. Using EPR, O– hole centers were identified in both γ- or electron-irradiated montebrasite samples showing superhyperfine interactions with two nearly equivalent 27Al nuclei. In addition, two different Ti3+ electron centers were also observed. From the γ irradiation dose dependency and thermal stability experiments, it is concluded that production of O– hole centers is limited by simultaneous creation of Ti3+ electron centers located between two equivalent hydroxyl groups. In contrast, the concentration of O– hole centers can be strongly increased by high-dose electron irradiation independent of the type of Ti3+ electron centers. From detailed analysis of the EPR angular rotation patterns, microscopic models for the O– hole and Ti3+ electron centers are presented, as well as their role in the formation of color centers discussed and compared to other minerals.Item Spectroscopic characterization of transition metal impurities in natural montebrasite/amblygonite.(2010) Dias, Lorena Nunes; Pinheiro, Mauricio Veloso Brant; Moreira, Roberto Luiz; Krambrock, Klaus Wilhelm Heinrich; Guedes, Kassílio José; Menezes Filho, Luiz Alberto Dias; Karfunkel, Joachim; Schnellrath, Jurgen; Cipriano, Ricardo Augusto ScholzNatural single-crystal specimens of the montebrasite/amblygonite series from Brazil, with general formula LiAlPO4(F,OH), were investigated by electron microprobe, Raman spectroscopy, X-ray diffraction, and infrared absorption. Since little is known about impurities and their local symmetries, electron paramagnetic resonance (EPR) was applied. Six different paramagnetic impurities and radiation defects were detected by EPR. Three of them, all substituting for Al3+ ions, namely, iron (Fe3+), vanadium (V4+), and niobium (Nb4+) impurities were characterized in this work. The Fe3+ (3d5)-related EPR spectra and angular dependencies show occupation of low-symmetry sites that are revealed in the high asymmetry parameter of the electronic fine structure, E/D = 0.27. Vanadium and niobium impurities are identified through their typical strong hyperfine interactions. Both form interesting examples for which the properties of 3d1 ion (V4+) and 4d1 ion (Nb4+) in the same host matrix can be compared. It is shown that both ions form complex defects of type VO2+ (vanadyl) and NbO2+ (niobyl), showing superhyperfine interaction with two equivalent hydrogen ions and not to fluorine. The EPR rotation patterns are analyzed in detail for three mutually perpendicular crystal planes. Spin Hamiltonian parameters are calculated and discussed.