PPGCC - Doutorado (Teses)
URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/9837
Navegar
Item Caracterização e análise de sensibilidade dos modelos de mobilidade veicular utilizando quantificadores de teoria da informação.(2020) Silva, Maurício José da; Oliveira, Ricardo Augusto Rabelo; Aquino, André Luiz Lins de; Aquino, André Luiz Lins de; Bianchi, Andrea Gomes Campos; Rosso, Osvaldo Anibal; Correia, Luiz Henrique AndradeNovas propostas de aplicações e protocolos para redes veiculares surgem todos os dias. É crucial avaliar, testar e validar estas propostas em larga escala antes de implantá-las no mundo real. Simulação ´e o método preferido pelos pesquisadores para avaliar suas propostas por permitir avaliações em larga escala e com baixo custo. É conhecido que, em simuladores para redes veiculares, modelos de mobilidade realistas são um requisito para produzir avaliações confiáveis. Porém, os modelos de mobilidade atuais são baseados em modelos aleatórios, normalmente o Random Waypoint, e eles não representam a mobilidade veicular real quando consideramos a variação de velocidade como elemento a ser avaliado. Neste trabalho apresentamos a caracterização global, por dia da semana e por hora do dia, do comportamento veicular utilizando informações de velocidades coletadas em diferentes cenários reais. Para realizar esta caracterização utilizamos a metodologia de Bandt-Pompe aplicada às séries temporais produzidas a partir das velocidades dos veículos. Em seguida, o histograma de probabilidade é atribuído aos seguintes quantificadores de Teoria da Informação: Entropia de Shannon, Complexidade Estatística e Medida de Informação de Fisher. Os resultados mostram que as velocidades veiculares possuem comportamento similar ao ruído colorido com espectro de potência f−k para k ≥ 0. Adicionalmente, utilizando a mesma metodologia, verificamos a fidelidade dos modelos de mobilidade usados nos principais simuladores de redes veiculares. A avaliação revelou que o modelo de Krauss é o modelo que mais se aproxima do comportamento veicular observado nos cenários reais. Em seguida, fizemos a análise de sensibilidade dos parâmetros do modelo de Krauss com o objetivo de identificar os parâmetros que mais influenciam para produzir comportamento correlacionado com o ruído colorido. Observamos que o parâmetro sigma, que utiliza o ruído branco (ruído branco, f−k para k = 0) para modelar o comportamento do motorista, é o que mais influencia no comportamento veicular. Assim, o parâmetro sigma precisa ser modificado para utilizar o ruído colorido f−k para k variando entre 0 < k ≤ 3.Item Contributions to automating the analysis of conventional Pap smears.(2023) Diniz, Débora Nasser; Souza, Marcone Jamilson Freitas; Bianchi, Andrea Gomes Campos; Souza, Marcone Jamilson Freitas; Bianchi, Andrea Gomes Campos; Carneiro, Cláudia Martins; Luz, Eduardo José da Silva; Pessin, Gustavo; Souza, Jefferson Rodrigo de; Veras, Rodrigo de Melo SouzaThis thesis, organized as a compilation of articles, develops and presents contri- butions to the automated analysis of conventional Pap smear slides. A conventional Pap smear slide is a sample of cervical cells collected and prepared on a glass slide for subsequent cytopathological analysis. The main contributions are to detect and classify cervical cell nuclei to develop a decision support tool for cytopathologists. The first arti- cle resulting from this research utilizes a hierarchical methodology using Random Forest for the nucleus classification of the Herlev and Center for Recognition and Inspection of Cells (CRIC) Searchable Image Database databases based on 232 handcrafted fea- tures. In this article, we investigate balancing techniques, perform statistical analyses using Shapiro-Wilk and Kruskal-Wallis tests, and introduce the CRIC Searchable Image Database segmentation base. Our result defined the state-of-the-art in five metrics for nucleus classification in five and seven classes and the state-of-the-art in precision and F1-score for two-class classification. The second article introduces a method for nu- cleus detection in synthetic Pap smear images from the Overlapping Cervical Cytology Image Segmentation Challenge dataset proposed at the 11th International Symposium on Biomedical Imaging (ISBI’14). In this second article, we investigate clustering al- gorithms for image segmentation. We also explore four traditional machine learning techniques (Decision Tree (DT), Nearest Centroid (NC), k-Nearest Neighbors (k-NN), and Multi-layer Perceptron (MLP)) for classification and propose an ensemble method using DT, NC, and k-NN. Our result defined the state-of-the-art recall using this dataset. The third article proposes an ensemble method using EfficientNets B1, B2, and B6 to classify images from the CRIC Searchable Image Database dataset. Here, we investigate ten neural network architectures to choose those used in the ensemble method and present a data augmentation methodology using image transformation techniques. Our result de- fined the five state-of-the-art metrics for nucleus classification in two and three classes. Furthermore, we introduce results for six-class classification. Lastly, the fourth article introduces the Cytopathologist Eye Assistant (CEA), an intuitive and user-friendly tool that uses deep learning to detect and classify cervical cells in Pap smear images, support- ing cytopathologists in providing diagnoses. We investigate You Only Look Once (YOLO) v5 and YOLOR for performing both tasks (detection and classification) and also explore the combination of using YOLOv5 for detection and the ensemble of EfficientNets from the third article for classification. The article explores data balancing techniques, under- sampling, and oversampling using Python’s Clodsa library. The CRIC Cervix database was used for tool evaluation, considering four scenarios: original images, resized im- ages, augmented resized images, and balanced resized images. The application of CEA was validated by specialists with years of experience in cytopathology, highlighting the tool’s ease of use and potential to address specific queries.Item Wearable edge AI towards cyber-physical applications.(2023) Silva, Mateus Coelho; Oliveira, Ricardo Augusto Rabelo; Ribeiro, Sérvio Pontes; Bianchi, Andrea Gomes Campos; Oliveira, Ricardo Augusto Rabelo; Teixeira, Fernando Augusto; Silva, Jorge Miguel Sá; Correia, Luiz Henrique Andrade; Silva, Saul Emanuel Delabrida; Amorim, Vicente José Peixoto deThe creation of novel technologies to support field work and research has a major impact from technologies such as the Internet of Things (IoT), Edge Computing and wearable computing. In this context, Artificial-Intelligence-based systems became more common and a trend in recent work. Environments with low connectivity and high latency in data transmission enforce the usage of Edge Computing technologies in the treatment of acquired data. Nonetheless, there is no clarity in how to transport Artificial Intelligence (AI) to Edge Computing in extreme environments, given the complexity of the requirements. This gap is more clear in the context of wearable computing, where the systems restrictions for developing systems are even harder. Thus, this work presents a protocol for developing Edge AI appliances and some case-study applications in the context of wearable devices. This study helps to evaluate the creation of Wearable Edge AI context as a novel research field.