PPGCC - Mestrado (Dissertações)

URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/597

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 7 de 7
  • Item
    Desenvolvimento de algoritmos de IA para dispositivos vestíveis utilizando computação de borda.
    (2023) Silva, Jonathan Cristovão Ferreira da; Oliveira, Ricardo Augusto Rabelo; Silva, Mateus Coelho; Oliveira, Ricardo Augusto Rabelo; Silva, Saul Emanuel Delabrida; Nacif, José Augusto Miranda; Amorim, Vicente José Peixoto de
    Os dispositivos vestíveis estão cada vez mais presentes em nossas vidas. Além disso, os algoritmos de inteligência artificial vêm se tornando essenciais para com- por estes dispositivos. Como os dispositivos vestíveis são restritos de recursos, tec- nologias que exigem grande capacidade computacional podem ser inviáveis para aplicações neste contexto, principalmente quando se trata da computação de borda. Visto isso, o trabalho propõe o desenvolvimento de algoritmos de inteligência arti- ficial para integração nestes dispositivos com o processamento dos dados na borda, sem utilizar recursos em nuvem. Esta proposta é validada com base em dois estudos de casos. O primeiro estudo de caso é a aplicação de técnicas de Machine Learning e Deep Learning na agricultura, com o objetivo de desenvolver um capacete inte- ligente para realizar inspeção de doençãs em laranjas. No segundo estudo de caso ́e desenvolvida uma nova solução vestível para o reconhecimento de atividade de caminhada. Com o auxílio de três algoritmos de IA, este estudo de caso apresentou novas perspectivas para autoavaliação do usuário a partir dos dados coletados na atividade realizada. Dessa maneira, esse trabalho apresenta uma análise de aspec- tos do desenvolvimento de algoritmos de IA para integração em dois dispositivos vestíveis através da computação de borda.
  • Item
    Uma abordagem centrada em dados para reconhecimento de fala em português : modelo de língua e suas implicações.
    (2023) Alvarenga, João Paulo Reis; Luz, Eduardo José da Silva; Luz, Eduardo José da Silva; Merschmann, Luiz Henrique de Campos; Silva, Rodrigo César Pedrosa
    Os avanços mais recentes no Reconhecimento Automático de Fala permitem alcançar uma qualidade jamais antes vista em línguas com dados abundantes, tais como o inglês, e em línguas com dados limitados, como o português. Em particular, abordagens baseadas em modelos de Transformers permitem realizar a tarefa de reconhecimento de fala diretamente a partir da representação do sinal bruto. Alguns estudos já indicam que a qualidade da transcrição pode ser melhorada ainda mais com o uso de modelos de linguagem. No entanto, o impacto real destes modelos ainda não está claro para o português brasileiro, assim como a importância da qualidade dos dados usados para treinar os modelos. Por isso, este trabalho explora o impacto dos modelos de linguagem aplicados ao reconhecimento de fala para língua portuguesa, tanto em termos de qualidade de dados quanto de desempenho computacional, com uma abordagem centrada em dados. Uma abordagem para medir a similaridade entre conjuntos de dados é proposta para auxiliar na tomada de decisão durante o treinamento. Os resultados mostram que é possível reduzir o tamanho do modelo de linguagem em ~80% e ainda alcançar taxas de erro por palavra em torno de 7,17% para o conjunto de dados Common Voice.
  • Item
    Uma rede U-Net modificada para segmentação de lesões de pele em imagens dermatoscópicas.
    (2022) Araujo, Graziela Silva; Cámara Chávez, Guillermo; Oliveira, Roberta Barbosa; Cámara Chávez, Guillermo; Oliveira, Roberta Barbosa; Ferreira, Anderson Almeida; Saúde, André Vital
    O diagnóstico auxiliado por computador pode ser viável para o diagnóstico precoce de câncer de pele. Para isso a tarefa de segmenta- ção de imagem desempenha um papel importante. A segmentação de uma imagem é um processo do qual a imagem é dividida, e a região de interesse é destacada, nesse caso, a lesão de pele pigmentada é segmentada. A segmentação de imagens dermatoscópicas é um desa- fio para os métodos tradicionais de segmentação e também para os métodos de aprendizado de máquina devido às diferentes condições de imagem. Há uma variação significativa na cor, textura, forma, tamanho e localização nas imagens dermatoscópicas. Além disso, po- dem conter imagens com variação de iluminação e diversos artefatos, como pelos, régua, bolhas de ar/óleo e amostra de cor. As imagens dermatoscópicas são adquiridas a partir de um dermatoscópio que permite que eventuais lesões possam ser visualizadas considerando estruturas nas camadas mais profundas da pele. Enfim, a arquitetura U-Net, é amplamente utilizada na literatura para segmentar imagens dermatoscópicas. O presente trabalho propõe um modelo baseado na arquitetura U-Net para segmentação de lesão de pele em imagens dermatoscópicas. Ainda, apresenta um estudo de ablação para jus- tificar as modificações feitas no modelo U-Net original, sendo elas, o número de épocas de treinamento, tamanho da imagem, funções de ativação e otimização, dropout e número de blocos convolucionais. Experimentos foram realizados nos conjuntos de dados ISIC 2017 e ISIC 2018 e mostram que é possível chegar a um modelo simples capaz de apresentar resultados competitivos em relação a outros trabalhos de última geração com os devidos ajustes em seus parâmetros.
  • Item
    Uma nova formulação para otimização multi-objetivo em redes de filas finitas gerais e com único servidor.
    (2020) Souza, Gabriel Lima de; Moreira, Gladston Juliano Prates; Duarte, Anderson Ribeiro; Moreira, Gladston Juliano Prates; Duarte, Anderson Ribeiro; Cruz, Frederico Rodrigues Borges da; Silva, Ivair Ramos
    Uma nova formulação de programação matemática é proposta para um problema de otimização em redes de filas. A soma das probabilidades de bloqueio de uma rede de filas acíclicas finitas de servidor único e tempo de serviço geral é minimizada juntamente com o tamanho total da área de espera e as taxas gerais de serviço. Um algoritmo genético multiobjetivo (MOGA) e um algoritmo multiobjetivo de otimização por enxame de partículas (MOPSO) é adaptado para resolver esse difícil problema estocástico. O algoritmo resultante produz um conjunto de soluções eficientes para mais de um objetivo. A implementação dos algoritmos de otimização depende do método de expansão generalizado (GEM), uma ferramenta clássica usada para avaliar o desempenho de redes de filas finitas. Um conjunto de experimentos computacionais é apresentado para evidenciar a eficácia e eficiência da abordagem proposta. As informações obtidas a partir da análise de uma rede complexa podem ajudar no planejamento desses tipos de redes de filas.
  • Item
    Reconhecimento de caracteres em imagens com ruído usando Deep Learning.
    (2017) Peixoto, Sirlene Pio Gomes da Silva; Gomes, David Menotti; Gomes, David Menotti; Bianchi, Andrea Gomes Campos; Cámara Chávez, Guillermo; Todt, Eduardo; Ferreira, Anderson Almeida
    Devido à degradação e baixa qualidade em imagens com ruído, como imagens de cenas naturais e CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) baseados em texto, o problema de reconhecimento de caracteres continua a ser extremamente desafiador. Neste trabalho, estudamos três abordagens diferentes de redes convolucionais (otimização de arquitetura com filtros aleatórios, aprendizado de filtros não supervisionado e supervisionado) que visam melhorar as representações de característica dessas imagens por meio de deep learning. Nós realizamos experimentos no amplamente utilizado dataset The Street View House Numbers (SVHN), em um novo dataset de CAPTCHAS criado por nós, e em um dataset de placas brasileiras. A abordagem que aprende os pesos dos filtros por meio do algoritmo back-propagation utilizando a técnica data augmentation e a estratégia de agregação de algumas camadas localmente conectadas à rede convolucional obteve resultados promissores para o dataset CAPTCHA (97,36% de acurácia para caracteres e 85,4% para CAPTCHAs) e resultados muito próximos ao estado da arte em relação ao dataset SVHN (97,45 % de acurácia para dígitos). Já no dataset de placas brasileiras, que contém um número de amostras muito inferior aos demais, a abordagem que realiza a otimização de arquitetura com filtros aleatórios obteve os resultados mais promissores. Além disso, analisamos o comportamento da abordagem deep learning que realiza o aprendizado supervisionado de filtros diante da exposição do dataset SVHN a interferências adversas.
  • Item
    Fusão de características na re-identificação de pessoas.
    (2018) Sales, Anderson Luís Cavalcanti; Cámara Chávez, Guillermo; Cámara Chávez, Guillermo; Ferreira, Anderson Almeida; Bianchi, Andrea Gomes Campos; Schwartz, William Robson
    Re-Identi cação de pessoas é um problema de correspondência entre identidades capturadas por câmeras de vigilância não sobrepostas. Essa correspondência, também conhecida como rastreamento multi-câmeras é uma tarefa da área de visão computacional. Tem grande foco por se tratar, principalmente, de demandas nas esferas de segurança pública e/ou pessoal. Esse foco se dá em vista das possíveis incapacidades humanas na realização de tarefas repetitivas por um tempo prolongado, por exemplo. Intenciona-se com essa abordagem suavizar, quão possível, os custos inerentes ao processo computacional tradicional. A abordagem proposta é fracionada em duas partes: aprendizado de um espaço métrico de baixa dimensionalidade (denominado fase inicial) e reorganização de rank de amostras a partir de uma classi cação binária ponderada, a m de reduzir a incompatibilidade entre várias câmeras. Usa-se handcrafted image descriptors como ferramentas. Adicionalmente, emprega-se na abordagem proposta, um modelo de aprendizado métrico discriminante para representar features em uma nova dimensão; aprendizado métrico de similaridade em larga escala e distância métrica para construção dos ranks primários entre amostras de teste e imagens da galeria. Em todo o trabalho as imagens amostrais foram divididas a partir da imagem original em secções, a m de aumentar a discriminação entre as amostras.
  • Item
    Uma abordagem híbrida para resolver o problema da escala de motoristas de ônibus urbano.
    (2014) Souza, Danilo Santos; Silva, Gustavo Peixoto
    A alocação da tripulação (motoristas e cobradores) é uma etapa muito importante no planejamento operacional do Sistema de Transporte Público visto que custo operacional representado pelas escalas de trabalho compõe uma parcela significativa nos custos totais de uma empresa de transporte público. A redução dos custos das escalas de trabalho afetam não são as empresas operadoras, mas também os usuários deste serviço, pois com esta redução há a possibilidade de um maior investimento na qualidade do transporte público e a redução dos preços dos bilhetes. Estes custos, estão estritamente relacionados as normas operacionais impostas pelas empresas e legislações trabalhistas que se retém na definição das jornadas de trabalho dos motoristas e cobradores. Esse trabalho tem a finalidade de propor um novo método computacional capaz de auxiliar o processo da programação da tripulação em empresas de transporte público de ônibus urbano. Os métodos apresentados nesta pesquisa são baseados no uso de um modelo de programação linear inteira, ainda inédito na literatura, se diferindo dos demais pelo fato de que cada jornada e gerada diretamente a partir das tarefas a serem alocadas. Uma metaheurística Late Acceptance Hill Climbing (LAHC) também foi utilizada com o objetivo de resolver problemas de maiores dimensões. Um método híbrido, utilizando o método exato e a metaheurística LAHC, é proposto com o objetivo de obter um refinamento das soluções obtidas pela metaheurística, de modo a reduzir os custos das jornadas geradas. Para avaliar as abordagens apresentadas foram utilizadas instâncias geradas a partir de dados reais de uma empresa do setor de transporte público da cidade de Belo Horizonte/MG. Os modelos computacionais propostos apresentaram resultados satisfatórios, sendo que os custos finais foram reduzidos para a maioria dos testes realizados. Por outro lado, há a necessidade de novos estudos sobre os métodos apresentados, afim de que os mesmos se tornem mais eficientes.