PPGCC - Mestrado (Dissertações)

URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/597

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    ChurNAS : uma busca de arquitetura neural para previsão de desligamento de clientes.
    (2023) Almeida, Marcus Daniel de; Moreira, Gladston Juliano Prates; Luz, Eduardo José da Silva; Moreira, Gladston Juliano Prates; Luz, Eduardo José da Silva; Silva, Ivair Ramos; Meneghini, Ivan Reinaldo
    A Predição de desligamento de clientes PDC (do inglês Customer Churn Pre- diction) é fundamental para a gestão eficiente de clientes, uma vez que permite a otimização da lucratividade por meio de estratégias de marketing informadas e cam- panhas de retenção. Nesse contexto, o presente estudo propõe uma nova abordagem, chamada ChurNAS, baseada em algoritmo genético para a busca de arquiteturas neurais (Neural Architecture Search - NAS) em problemas de PDC na indústria de serviços financeiros. Ao contrário dos modelos tradicionais, como regressão logística e árvore de decisão, as redes neurais profundas apresentam maior versatilidade para modelagem de dados complexos. No entanto, a busca pela arquitetura ideal em redes neurais profundas ́e um desafio devido `a sua alta complexidade. Os resultados demonstram que a abordagem ChurNAS encontrou modelos com desempenho supe- rior aos classificadores tradicionais ajustados por otimiza ̧c ̃ao de hiperparâmetros. A abordagem proposta obteve uma acurácia de 88,6%, em comparação com 82,54% do XG-Boost e 82,49% do Floresta Aleatória. Al ́em disso, alcançou uma sensibilidade de 58,89%, enquanto o XG-Boost e o Floresta Aleatória apresentaram 57,1% e 57,81%, respectivamente. Quanto `a precisão, a abordagem ChurNAS obteve 39,41%, superando o XG-Boost (26,96%) e o Floresta Aleatória (26,17%). Adicionalmente, o estudo examinou o impacto da quantidade de dados e da capacidade do modelo, enfatizando a importância de considerar a natureza temporal das transações financei- ras ao utilizar redes neurais para PDC. Em suma, este trabalho destaca o potencial da abordagem ChurNAS para solucionar problemas de PDC no setor de servi ̧cos financeiros e melhorar a eficiência do gerenciamento de clientes.
  • Item
    Uma nova formulação para otimização multi-objetivo em redes de filas finitas gerais e com único servidor.
    (2020) Souza, Gabriel Lima de; Moreira, Gladston Juliano Prates; Duarte, Anderson Ribeiro; Moreira, Gladston Juliano Prates; Duarte, Anderson Ribeiro; Cruz, Frederico Rodrigues Borges da; Silva, Ivair Ramos
    Uma nova formulação de programação matemática é proposta para um problema de otimização em redes de filas. A soma das probabilidades de bloqueio de uma rede de filas acíclicas finitas de servidor único e tempo de serviço geral é minimizada juntamente com o tamanho total da área de espera e as taxas gerais de serviço. Um algoritmo genético multiobjetivo (MOGA) e um algoritmo multiobjetivo de otimização por enxame de partículas (MOPSO) é adaptado para resolver esse difícil problema estocástico. O algoritmo resultante produz um conjunto de soluções eficientes para mais de um objetivo. A implementação dos algoritmos de otimização depende do método de expansão generalizado (GEM), uma ferramenta clássica usada para avaliar o desempenho de redes de filas finitas. Um conjunto de experimentos computacionais é apresentado para evidenciar a eficácia e eficiência da abordagem proposta. As informações obtidas a partir da análise de uma rede complexa podem ajudar no planejamento desses tipos de redes de filas.