PPGCC - Mestrado (Dissertações)
URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/597
Navegar
1 resultados
Resultados da Pesquisa
Item Proposta e avaliação de um sistema automático para identificação de veículos.(2013) Oliveira Neto, Vantuil José de; Menotti, David; Menotti, David; Cámara Chávez, Guillermo; Bianchi, Andrea Gomes Campos; Facon, Jacques; Guimarães, Silvio Jamil Ferzoli; Santos, Haroldo GambiniSistemas automáticos de identificação de veículos têm como objetivo a identificação de automóveis por meio de suas placas. A maioria dos trabalhos relatados na literatura científica utilizam imagens únicas de um veículo, em geral capturadas sob condições de iluminação e distância controladas, utilizando em muitos casos um gatilho que informa ao sistema qual o momento em que a imagem deve ser processada pelo sistema. Nosso sistema parte de uma abordagem diferente: a localização e o rastreamento dos veículos ao longo da cena. Com esta abordagem o uso do gatilho é dispensado, a área para localização da placa é diminuída devido ao rastreamento do veículo e a quantidade de quadros disponíveis para um mesmo veículo é aumentada. Construímos uma base de vídeos com 1061 veículos divididos em 23 vídeos diferentes, capturados em quatro pontos distintos no acesso principal da nossa universidade. O sistema foi desenvolvido utilizando C++ e OpenCv, e constituído de 6 módulos: localização de movimento, rastreamento de veículos, seleção do melhor frame, localização da placa, segmentação dos caracteres e reconhecimento; cada um dos módulos foi construído independentemente, permitindo assim que trabalhos futuros alterem apenas um destes módulos, dando mais flexibilidade a trabalhos futuros. O sistema funciona em tempo real, processando o vídeo em menos tempo do que o tempo total do vídeo. Em nossa base, o sistema foi capaz de identificar perfeitamente apenas 27,7% dos veículos, no entanto de reconhecer 54,7% dos caracteres rotulados. Em pontos de referência mais adequados, atingimos 65,8% e 65,03% de reconhecimento de caracteres, com 71,11% e 70,30% de identificação de veículos com quatro ou mais dígitos da placa corretamente reconhecidos. Embora o sistema não apresente resultados promissores nos vídeos avaliados, ele abre espaço para que diferentes métodos e abordagens encapsulados em módulos do sistema possam ser facilmente avaliados.