DEFAR - Artigos publicados em periódicos

URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/531

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Novel insights to enhance therapeutics with acyclovir in the management of herpes simplex encephalitis.
    (2021) Assis, Maria Silvia Gurgel; Pedrosa, Taciane Cristina Fernandes; Moraes, Fernanda Segurasse de; Caldeira, Tamires Guedes; Pereira, Gislaine Ribeiro; Souza, Jacqueline de; Ruela, Andre Luís Morais
    Acyclovir is an antiviral drug poorly absorbed in the gastrointestinal tract due to its hydrophilicity, with low oral bioavailability (~20%). Although acyclovir is prescribed in the management of herpes simplex encephalitis (HSE), the disease has a poor prognosis, particularly if the treatment is delayed, reaching mortality rates of 70% if left untreated. Thus, high acyclovir doses are administered by intravenous (IV) infusion, usually at a dosage of 10 mg kg1 8-hourly in adults with normal renal function. However, the mortality related to HSE treated with acyclovir remains high (~20%) and permanent sequelae are commonly reported after 1 year (~50%). This review analyzed clinical trials following IV acyclovir administration. Novel insights aiming to improve drug bioavailability were reviewed, including acyclovir or its prodrugs, leading to the systemic distribution of the drug or drug targeting. Much research effort has been made to improve antiviral therapy, searching for delivery systems increasing acyclovir bioavailability by non-invasive pathways, such as oral and nasal pathways, or parenterally administered nanotechnology-based systems leading to drug targeting. Nanocarriers administered by non-invasive pathways represent feasible alternatives to treat HSE, even though not be industrially manufactured yet.
  • Item
    Mechanistic insights into the intracellular release of doxorubicin from pH-sensitive liposomes.
    (2021) Reis, Samara Bonesso dos; Silva, Juliana de Oliveira; Fossa, Fernanda Garcia; Leite, Elaine Amaral; Souza, Angelo Malachias de; Lana, Gwenaelle Elza Nathalie Pound; Mosqueira, Vanessa Carla Furtado; Oliveira, Mônica Cristina de; Barros, André Luís Branco de; Jesus, Marcelo Bispo de
    pH-sensitive liposomes are interesting carriers for drug-delivery, undertaking rapid bilayer destabilization in response to pH changes, allied to tumor accumulation, a desirable behavior in the treatment of cancer cells. Previously, we have shown that pH-sensitive liposomes accumulate in tumor tissues of mice, in which an acidic environment accelerates drug delivery. Ultimately, these formulations can be internalized by tumor cells and take the endosome-lysosomal route. However, the mechanism of doxorubicin release and intracellular traffic of pH-sensitive liposomes remains unclear. To investigate the molecular mechanisms underlying the intracellular release of doxorubicin from pH-sensitive liposomes, we followed HeLa cells viability, internalization, intracel lular trafficking, and doxorubicin’s intracellular delivery mechanisms from pH-sensitive (SpHL-DOX) and non pH-sensitive (nSpHL-DOX) formulations. We found that SpHL-DOX has faster internalization kinetics and intracellular release of doxorubicin, followed by strong nuclear accumulation compared to nSpHL-DOX. The increased nuclear accumulation led to the activation of cleaved caspase-3, which efficiently induced apoptosis. Remarkably, we found that chloroquine and E64d enhanced the cytotoxicity of SpHL-DOX. This knowledge is paramount to improve the efficiency of pH-sensitive liposomes or to be used as a rational strategy for developing new formulations to be applied in vivo.