DEFAR - Artigos publicados em periódicos
URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/531
Navegar
5 resultados
Resultados da Pesquisa
Item Calcium channels blockers toxins attenuate abdominal hyperalgesia and inflammatory response associated with the cerulein-induced acute pancreatitis in rats.(2021) Carvalho, Vanice Paula Ricardo; Silva, Juliana Figueira da; Buzelin, Marcelo Araújo; Silva Júnior, Cláudio Antônio da; Santos, Duana Carvalho dos; Diniz, Danuza Montijo; Binda, Nancy Scardua; Borges, Marcia Helena; Guimarães, André Luiz Senna; Pereira, Elizete Maria Rita; Gomez, Marcus ViniciusAgents that modulate the activity of high-voltage gated calcium channels (HVCCs) exhibit experimentally and clinically significant effect by relieving visceral pain. Among these agents, the toxins Phα1β and ω-conotoxin MVIIA effectively reduce chronic pain in rodent models. The molecular mechanisms underlying the chronic pain associated with acute pancreatitis (AP) are poorly understood. Hypercalcemia is a risk factor; the role of cytosolic calcium is considered to be a modulator of pancreatitis. Blockade of Ca2+ signals may be useful as a prophylactic treatment of pancreatitis. We explored the pathophysiological roles of three peptide toxins: Phα1β and its re- combinant form CTK 01512-2—blockers of TRPA1 receptor and HVCCs and ω-conotoxin MVIIA, a specific blocker of N-type calcium channels in cerulein-induced AP. Cerulein injection elicits AP in rats, evidenced by an increase in hyperalgesic pain, inflammatory infiltration, amylase and lipase secretion, and reactive oxygen species, TNF-α, and p65 NF-κB levels. These effects of cerulein-induced AP were abolished by Phα1β and its recombinant form CTK 01512-2, whereas ω-conotoxin MVIIA had no effect on the induced increase in pancreatic enzyme secretion. Our results demonstrate that Phα1β and CTK 01512-2 toxins—antagonists of HVCCs and TRPA1 receptor presented an effective response profile, in the control of nociception and inflammatory process in the AP model in rats, without causing changes in spontaneous locomotion of the rats.Item Analgesic effects of Phα1β toxin : a review of mechanisms of action involving pain pathways.(2021) Silva, Juliana Figueira da; Binda, Nancy Scardua; Pereira, Elizete Maria Rita; Lavor, Mário Sérgio Lima de; Vieira, Luciene Bruno; Souza, Alessandra Hubner de; Rigo, Flávia Karine; Ferrer, Hèlia Tenza; Castro Junior, Célio José de; Ferreira, Juliano; Gomez, Marcus ViniciusPhα1β is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1β to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1β (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1β antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.Item Analgesic and side effects of intravenous recombinant Phα1β.(2020) Rigo, Flavia Karine; Rossato, Mateus Fortes; Borges, Vanessa; Silva, Juliana Figueira da; Pereira, Elizete Maria Rita; Ávila, Ricardo Andrez Machado de; Trevisan, Gabriela; Astoni, Duana Carvalho dos Santos; Diniz, Danuza Montijo; Silva, Marco Aurélio Romano; Castro Junior, Célio José de; Cunha, Thiago Mattar; Ferreira, Juliano; Gomez, Marcus ViniciusBackground: Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1β exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1β in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1β using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results: Intravenous administration of recombinant Phα1β toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion: Our data suggest that intravenous administration of recombinant Phα1β may be feasible for drug-induced analgesia, without causing any severe side effects.Item Phoneutria toxin PnTx3-5 inhibits TRPV1 channel with antinociceptive action in an orofacial pain model.(2020) Pereira, Elizete Maria Rita; Souza, Jéssica Mabelle; Carobin, Natália Virtude; Silva, Juliana Figueira da; Astoni, Duana Carvalho dos Santos; Silva Júnior, Cláudio Antônio da; Binda, Nancy Scardua; Borges, Marcia Helena; Nagem, Ronaldo Alves Pinto; Kushmerick, Christopher; Ferreira, Juliano; Castro Junior, Célio José de; Ribeiro, Fabiola Mara; Gomez, Marcus ViniciusCapsaicin, an agonist of TRPV1, evokes intracellular [Ca2+] transients and glutamate release from perfused trigeminal ganglion. The spider toxin PnTx3-5, native or recombinant is more potent than the selective TRPV1 blocker SB-366791 with IC50 of 47 ± 0.18 nM, 45 ± 1.18 nM and 390 ± 5.1 nM in the same experimental conditions. PnTx3-5 is thus more potent than the selective TRPV1 blocker SB-366791. PnTx3-5 (40 nM) and SB-366791 (3 μM) also inhibited the capsaicin-induced increase in intracellular Ca2+ in HEK293 cells transfected with TRPV1 by 75 ± 16% and 84 ± 3.2%, respectively. In HEK293 cells transfected with TRPA1, cinnamaldehyde (30 μM) generated an increase in intracellular Ca2+ that was blocked by the TRPA1 antagonist HC-030031 (10 μM, 89% inhibition), but not by PnTx3-5 (40 nM), indicating selectivity of the toxin for TRPV1. In whole-cell patch-clamp experiments on HEK293 cells transfected with TRPV1, capsaicin (10 μM) generated inward currents that were blocked by SB-366791 and by both native and recombinant PnTx3-5 by 47 ± 1.4%; 54 ± 7.8% and 56 ± 9.0%, respectively. Intradermal injection of capsaicin into the rat left vibrissa induced nociceptive behavior that was blocked by pre-injection with either SB-366791 (3 nmol/site i.d., 83.3 ± 7.2% inhibition) or PnTx3-5 (100 fmol/site, 89 ± 8.4% inhibition). We conclude that both native and recombinant PnTx3-5 are potent TRPV1 receptor antagonists with antinociceptive action on pain behavior evoked by capsaicin.Item The inhibitory efect of Phα1β toxin on diabetic neuropathic pain involves the CXCR4 chemokine receptor.(2020) Silva Júnior, Cláudio Antônio da; Castro Junior, Célio José de; Pereira, Elizete Maria Rita; Binda, Nancy Scardua; Silva, Juliana Figueira da; Cordeiro, Marta do Nascimento; Diniz, Danuza Montijo; Santa Cecília, Flávia Viana; Ferreira, Juliano; Gomez, Marcus ViniciusBackground: Diabetic neuropathy is a common cause of painful diabetic neuropathy (PDN). C-X-C chemokine receptor type 4 (CXCR4) expression is increased in peripheral nerve samples from diabetes patients, suggesting a role for CXCR4 in PDN. Therefore, we evaluated the effects of Phα1β, ω-conotoxin MVIIA, and AMD3100 in a model of streptozotocin (STZ)-induced PDN in rodents and naïve model of rats with the activation of the CXCR4/stromal cell-derived factor 1 (SDF-1) signal. Methods: Diabetic neuropathy was induced by intraperitoneal (ip) injection of STZ in Wistar rats. Naïve rats were intrathecally injected with SDF-1 to test the CXCR4/SDF-1 signal. The effects of Phα1β intrathecal (it), ω-conotoxin MVIIA intrathecal (it), and AMD3100 intraperitoneal (ip) on rat hypersensitivity, IL-6, and the intracellular calcium [Ca2+]i content of diabetic synaptosomes were studied. Results: The drugs reduced the hypersensitivity in diabetic rats. SDF-1 (1.0 µg/it) administration in naïve rats induced hypersensitivity. Phα1β (100 pmol/it) or AMD3100 (2.5 µg/ip) reduced this hypersensitivity after 2 h treatments, while ω-conotoxin MVIIA did not have an effect. IL-6 and [Ca2+]i content increased in the spinal cord synaptosomes in diabetic rats. The drug treatments reduced IL-6 and the calcium influx in diabetic synaptosomes. Conclusions: Phα1β, ω-conotoxin MVIIA, and AMD3100, after 2 h of treatment of STZ-induced PDN, reduced hypersensitivity in diabetic rats. In naïve rats with CXCR4/SDF-1 activation, the induced hypersensitivity decreased after 2 h treatments with Phα1β or AMD-3100, while ω-conotoxin MVIIA did not affect. The inhibitory effects of Phα1β on PDN may involve voltage-dependent calcium channels.