DEFAR - Artigos publicados em periódicos

URI permanente para esta coleçãohttp://www.hml.repositorio.ufop.br/handle/123456789/531

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Deep sequencing of small RNAs reveals the repertoire of miRNAs and piRNAs in Biomphalaria glabrata.
    (2020) Queiroz, Fábio Ribeiro; Portilho, Laysa Gomes; Jeremias, Wander de Jesus; Babá, Élio Hideo; Amaral, Laurence Rodrigues do; Silva, Luciana Maria; Coelho, Paulo Marcos Zech; Caldeira, Roberta Lima; Gomes, Matheus de Souza
    BACKGROUND Biomphalaria glabrata snails are widely distributed in schistosomiasis endemic areas like America and Caribe, displaying high susceptibility to infection by Schistosoma mansoni. After the availability of B. glabrata genome and transcriptome data, studies focusing on genetic markers and small non-coding RNAs have become more relevant. The small RNAs have been considered important through their ability to finely regulate the gene expression in several organisms, thus controlling the functions like cell growth, metabolism, and susceptibility/resistance to infection. OBJECTIVE The present study aims on identification and characterisation of the repertoire of small non-coding RNAs in B. glabrata (Bgl-small RNAs). METHODS By using small RNA sequencing, bioinformatics tools and quantitative reverse transcription polymerase chain reaction (RT-qPCR), we identified, characterised, and validated the presence of small RNAs in B. glabrata. FINDINGS 89 mature miRNAs were identified and five of them were classified as Mollusk-specific. When compared to model organisms, sequences of B. glabrata miRNAs showed a high degree of conservation. In addition, several target genes were predicted for all the mature miRNAs identified. Furthermore, piRNAs were identified in the genome of B. glabrata for the first time. The B. glabrata piRNAs showed strong conservation of uridine as first nucleotide at 5’ end, besides adenine at 10th position. Our results showed that B. glabrata has diverse repertoire of circulating ncRNAs, several which might be involved in mollusk susceptibility to infection, due to their potential roles in the regulation of S. mansoni development. MAIN CONCLUSIONS Further studies are necessary in order to confirm the role of the Bgl-small RNAs in the parasite/host relationship thus opening new perspectives on interference of small RNAs in the organism development and susceptibility to infection.
  • Item
    Genome-wide identification, characterisation and expression profiling of the ubiquitin-proteasome genes in Biomphalaria glabrata.
    (2019) Portilho, Laysa Gomes; Duarte, Bruna Custódio Dias; Queiroz, Fábio Ribeiro; Ribeiro, Thales Henrique Cherubino; Jeremias, Wander de Jesus; Babá, Élio Hideo; Coelho, Paulo Marcos Zech; Morais, Enyara Rezende; Cabral, Fernanda Janku; Caldeira, Roberta Lima; Gomes, Matheus de Souza
    BACKGROUND Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis.