Navegando por Assunto "Asymptotic behavior"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Asymptotic behavior of the p-torsion functions as p goes to 1.(2016) Bueno, Hamilton Prado; Ercole, Grey; Macedo, Shirley da SilvaLet Ω be a Lipschitz bounded domain of RN, N ≥ 2, and let up ∈ W1,p 0 (Ω) denote the p-torsion function of Ω, p > 1. It is observed that the value 1 for the Cheeger constant h(Ω) is threshold with respect to the asymptotic behavior of up, as p → 1+, in the following sense: when h(Ω) > 1, one has limp→1+ up L∞(Ω) = 0, and when h(Ω) < 1, one has limp→1+ up L∞(Ω) = ∞. In the case h(Ω) = 1, it is proved that lim supp→1+ up L∞(Ω) < ∞. For a radial annulus Ωa,b, with inner radius a and outer radius b, it is proved that limp→1+ up L∞(Ωa,b) = 0 when h(Ωa,b) = 1.Item On a singular minimizing problem.(2018) Ercole, Grey; Pereira, Gilberto de AssisFor each q ∈ (0, 1) let λq(Ω) := inf k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and Z Ω |v| q dx = 1, where p > 1 and Ω is a bounded and smooth domain of R N , N ≥ 2. We first show that 0 < μ(Ω) := lim q→0+λq(Ω)|Ω| p q < ∞, where |Ω| = R Ω dx. Then, we prove that μ(Ω) = min (k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and lim q→0+ 1 |Ω| Z Ω |v| q dx 1 q = 1) and that μ(Ω) is reached by a function u ∈ W1,p 0 (Ω), which is positive in Ω, belongs to C 0,α(Ω), for some α ∈ (0, 1), and satisfies − div(|∇u| p−2 ∇u) = μ(Ω)|Ω| −1 u −1 in Ω, and Z Ω log udx = 0. We also show that μ(Ω)−1 is the best constant C in the following log-Sobolev type inequality exp 1 |Ω| Z Ω log |v| p dx ≤ C k∇vk p Lp(Ω) , v ∈ W1,p 0 (Ω) and that this inequality becomes an equality if, and only if, v is a scalar multiple of u and C = μ(Ω)−1.