Navegando por Autor "Rodrigues, William Fortes"
Agora exibindo 1 - 4 de 4
- Resultados por Página
- Opções de Ordenação
Item Geochemistry of Antarctic periglacial soils from Harmony Point, Nelson Island.(2021) Rodrigues, William Fortes; Oliveira, Fábio Soares de; Schaefer, Carlos Ernesto Gonçalves Reynaud; Araújo, Teodoro Gauzzi Rodrigues de; Leite, Mariangela Garcia PraçaLittle is known about the geochemical baseline of Antarctic soils in diferent environments. We investigated the soil geo- chemistry of the two main landscape units of Harmony Point (Nelson Island, Maritime Antarctica): the coastal domain and the upper platform. Fourteen soil samples (seven in each landscape unit) were divided according to depth (hA for surface and hC for subsurface horizons) and characterized by their major, trace elements and REE concentrations. The concentration of major elements (SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO, MnO, and K2O) were determined by X-ray fuorescence, whereas trace elements were quantifed by inductively coupled plasma-optical emission spectrometry (Co, Ni, As, Cd, Pb, Ba, Cr, Cu, V, Zn, and Zr) and REE by inductively coupled plasma mass spectrometry. The results showed geochemical variation with depth, either related to pedological processes (phosphatization, humifcation, podzolization, and cryoturbation), and parent material constitution (andesitic basalt in upper platform and mixed volcanic sediments in coastal domain). The main chemical aspects distinguishing Harmony Point soils from other Maritime Antarctic soils from the vicinity are: (i) higher CIA index; (ii) P2O5 enrichment due to bird guano and enhanced pedogenesis; (iii) REE retention; (iv) enrichment in Fe2O3 and S concentrations. The REE concentration was infuenced by weathering processes combined with allochthonous inputs, such as volcanic ashes and iceberg-transported granitic boulders at the coastal domain. The Harmony Point soils are little subjected to anthropic impacts, so they can be used as a basis for environmental monitoring programs in the Maritime Antarctica region.Item Phosphatization under birds’ activity : ornithogenesis at different scales on Antarctic Soilscapes.(2021) Rodrigues, William Fortes; Oliveira, Fábio Soares de; Schaefer, Carlos Ernesto Gonçalves Reynaud; Leite, Mariangela Garcia Praça; Pavinato, Paulo SérgioExtensive areas of penguins’ nesting (Pygoscelis sp.), on ice-free areas, account for vast deposits of organic matter- rich guano in maritime Antarctica. One such area, at Harmony Point, currently houses different penguin colonies with extensive and unique ornithogenic soils, where phosphatization is the key soil-forming process. We sought to enhance the knowledge of phosphatization process, products, cycles, and phosphorus (P) forms in these un- usual soils. We compared ornithogenic and non-ornithogenic soils, based on advanced chemical, micromor- phological and mineralogical analyses of samples of guano and phosphate biocrusts, complete with P and OM fractionation. Ornithogenic soils have the organic P-pool as the largest phosphorous compartment, followed by varying P-Ca forms. In contrast, soils unaffected by phosphatization showed a high inorganic P-pool. Penguin guano is enriched with P, Ca, K, Cu, Zn, C and N. The phosphatic biocrusts are composed of struvite and hy- droxyapatite, forming a gradient of phosphate forms. We recognized three different phosphatization environ- ments, namely (i) present-day marine birds’ rookeries, (ii) adjacent zone of rookeries and (iii) abandoned rookeries. Geomorphological evolution of the coastal areas, by Holocene glacier retreat, resulted in the changing location of penguin colonies, resulting in a larger area and varying ages of phosphatization, forming ornithogenic soils with contrasting evolution degrees. Abandoned areas have greater vegetation growth, with higher diversity.Item Soil-chronosequence and quaternary landscape evolution at the marine terraces of Harmony Point, Nelson Island, Maritime Antarctica.(2022) Rodrigues, William Fortes; Machado, Mariana de Resende; Oliveira, Fábio Soares de; Schaefer, Carlos Ernesto Gonçalves Reynaud; Leite, Mariangela Garcia Praça; Michel, Roberto Ferreira Machado; Araújo, Teodoro Gauzzi Rodrigues deThis study characterized the physical, chemical, macro- and micromorphological soil properties from three successive marine terrace levels from Harmony Point (Nelson Island, Maritime Antarctica) in order to understand the pedological signatures of Quaternary coastal landscape evolution of Maritime Antarctica. Soils were sampled on the Late Holocene beach (current beach) and Mid Holocene marine terraces higher up, at 3, 8, and 12 m a.s.l. At the lower levels, the predominant soils were Gelorthents, whereas Haplogelepts dominate the higher terraces. Soil properties are mostly influenced by parent material and faunal activity, in which cryoclastic (thermal weathering) and phosphatization are the main soil-forming processes. Soils from the upper levels are more developed, deeper with reddish colors, granular structures and incipient formation B horizon. These horizonation features highlight that soils vary according with age of glacier-isostatic terrace uplift, representing a Quaternary soil chronosequence. All marine terrace levels are Ornithogenic soils, at varying degrees. However, the presence of old bird nesting sites for long periods led to formation of phosphatic horizons, stable Fe-phosphate minerals and abundant vegetation in the highest terraces of this part of Maritime Antarctica.Item Soil-landscape interplays at Harmony Point, Nelson Island, Maritime Antarctica : chemistry, mineralogy and classification.(2019) Rodrigues, William Fortes; Oliveira, Fábio Soares de; Schaefer, Carlos Ernesto Gonçalves Reynaud; Leite, Mariangela Garcia Praça; Araújo, Teodoro Gauzzi Rodrigues de; Bockheim, James G.; Putzke, JairSoils and landforms of Nelson Island remain one of the least studied in the South Shetlands Archipelago, despite that it is one of the oldest ice-free areas and is strongly vegetated. In this paper, we examine the main processes and factors of soil formation at Harmony Point and the relation of soils to landforms, vegetation and lithology. To achieve the goals, 26 pedons were collected and studied from a 4 km2 ice-free area at Harmony Point (S62°18′; W059°10′) on the southern area of Nelson Island (Maritime Antarctica). The soils were sampled on all representative local landforms, including three levels of uplifted marine terraces up to cryoplanated plateau, waterlogged depressions, rock felsenmeer, debris slopes and patterned ground, and a paraglacial border of the ice cap (270 m a.s.l). Sampling along the cryoplanated plateau was carried out along a gradient extending inland from the margins of the Ice Cap; and sampling of the marine terraces was performed along a chronosequence under varying bird-nesting influence and age. The main pedogenetic processes observed in this area are marked phosphatization, melanization from the accumulation of organic matter, and cryoturbation. Soil development varies from weakly developed, shallow, stony and cryoturbated to well-developed and organic-rich, phosphate soils with colors ranging from grayish to brown. The mineralogical composition of the clay fraction contains secondary minerals, indicating the active role of chemical weathering. Ornithogenic soils have mature phosphate minerals such as vivianite and taranakite, as well as poorly crystalline leucophosphite. Intensively cryoturbated soils are underlain by permafrost and are classified as Typic Haploturbels; polygonal soils are widespread on the cryoplanated plateau. Areas without permafrost were classified as Typic Gelorthents. Phosphatization is a dominant soil-forming process in this area and is associated with past and present-day guano accumulation by bird nesting and has led to the the development of deeper Ornithogenic Haplorthels. The ornithogenic soils occur at different topographic levels on the cryplanated platform and marine terraces. High P concentrations can be used as a proxy of the past nesting birds' activities, with far-reaching implications, especially with regards to vegetation growth and microbial activity and diversity.