Navegando por Autor "Patrocinio, Antonio Otavio de Toledo"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Fracionamento de bagaço de cana-de-açúcar empregando diferentes técnicas de pré-tratamento para a recuperação de glicose.(2022) Ferreira, André Luis Rossoni; Gurgel, Leandro Vinícius Alves; Baeta, Bruno Eduardo Lobo; Gurgel, Leandro Vinícius Alves; Baeta, Bruno Eduardo Lobo; Patrocinio, Antonio Otavio de Toledo; Herrera Adarme, Oscar Fernando; Barreto, Elisa da SilvaA recuperação de glicose a partir da celulose contido no bagaço da cana-de-açúcar é uma tarefa difícil e onerosa, pois, a hidrólise enzimática da celulose requer a adoção de pré-tratamentos delineados estrategicamente para desarranjar a matriz lignocelulósica concebida pela interação da celulose, hemiceluloses e lignina na célula vegetal. Portanto, na pesquisa descrita nesta dissertação foi avaliada a viabilidade técnica e ambiental da aplicação de uma estratégia de fracionamento do bagaço de cana empregando um pré-tratamento fotocatalítico (FC) após o pré-tratamento hidrotérmico (HT) seguido de extração alcalina (EA) para o isolamento e recuperação da celulose contida no bagaço de cana. Assim, o pré-tratamento hidrotérmico foi executado sob as condições de 183oC, por 41 min, 170 psi e relação líquido-sólido (RLS) de 3,94 mL de água por grama de bagaço de cana. Em seguida, a fração sólida resultante foi submetida a uma extração alcalina com solução aquosa de NaOH 0,2 mol L-1 (25oC, 30 s e RLS de 10 mL g-1 ). A fração sólida resultante das etapas de HT seguida de EA foram submetidas ao pré-tratamento fotocatalítico em temperatura ambiente (20-25°C) onde o teor de dióxido de titânio (0,5, 8,0, 15,5, 23,0 e 30,5% m m-1 ) e o tempo de reação (15, 40 e 65 min) foram variados simultaneamente em seis condições únicas delineadas por um planejamento experimental Doehlert, com triplicata no ponto central, em um total de nove experimentos. As frações sólidas geradas ao final do fracionamento do bagaço de cana foram submetidas a uma etapa de hidrólise enzimática catalisada por 10 FPU de enzimas celulolíticas e hemicelulolíticas por grama de biomassa (50oC, pH 4,8, RLS de 10 mL g-1 , 72 h, 85% de Cellic CTec 2 e 15% de Cellic HTec 2 (v v-1 )). As variáveis resposta conversão enzimática, teor de celulose residual e deslignificação dos ensaios de pré-tratamento fotocatalítico foram analisadas estatisticamente e modelos empíricos foram construídos. A conversão enzimática experimental alcançou valores de até 97,7% e a análise da superfície de resposta levou a uma região experimental onde baixas concentrações de dióxido de titânio e curtos tempos de reação favoreceram a obtenção de maiores valores dessa variável. No entanto, os maiores valores de conversão enzimática não estão necessariamente atrelados aos maiores teores de celulose residual e deslignificação. A demanda total de 34,4 kWh de energia elétrica e de 22,6 L de água foi estimada ao fim dos pré- tratamentos fracionados na condição que produziu a biomassa que proporcionaria a melhor recuperação de glicose (163,4 g) a partir de 1000 g de bagaço bruto. A condição ótima para maior conversão enzimática, maior teor de celulose residual e maior deslignificação foi estimada com o emprego de 30,5% TiO2 (m m-1 ) e 59 min de reação, com conversão enzimática e deslignificação estimadas em 96,0% e 58,2%, respectivamente.Item High water oxidation performance of W-Doped BiVO4 photoanodes coupled to V2O5 rods as a photoabsorber and hole carrier.(2018) Oliveira, Andreia Teixeira de; Rodriguez, Mariandry del Valle Rodriguez; Andrade, Tatiana Santos; Souza, Helen E. A. de; Ardisson, José Domingos; Oliveira, Henrique dos Santos; Oliveira, Luiz Carlos Alves de; Lorençon, Eudes; Silva, Adilson Cândido da; Nascimento, Lucas Leão; Patrocinio, Antonio Otavio de Toledo; Pereira, Márcio CésarMonoclinic BiVO4 is recognized as a promising photoanode for water oxidation, but its relatively wide bandgap energy (Eg ≈2.5 eV) and poor charge transport limit the light absorption (ηabs) and charge separation (ηsep) efficiencies, thus resulting in low photocurrents. To solve these drawbacks, here the ηabs × ηsep product has been decoupled by combining W‐doped BiVO4 and V2O5 rods (Eg ≈2.1 eV) for simultaneously increasing the light harvesting and the charge separation in photoanodes under back‐side illumination. In this strategy, V2O5 rods maximize the light absorption and hole transport throughout the W‐BiVO4 film, making more holes to achieve the V2O5/W‐BiVO4/H2O interface to trigger the water oxidation reaction with photocurrents as high as 6.6 mA cm−2 at 1.23 VRHE after 2 h reaction. Notably, under back‐side illumination, the W‐BiVO4/V2O5 photoanode exhibited ηabs × ηsep of 74.5 and 93.0% at 0.5 and 1.23 VRHE, respectively, the highest values reported up to date for BiVO4‐based photoelectrodes. This simple strategy brings us closer to develop efficient photoanodes for photoelectrochemical water splitting devices.Item Redução de CO2 em hidrocarbonetos e oxigenados : fundamentos, estratégias e desafios.(2021) Silva, Gelson Tiago dos Santos Tavares da; Lopes, Osmando Ferreira; Dias, Eduardo Henrique; Torres, Juliana Arriel; Nogueira, André Esteves; Faustino, Leandro Augusto; Prado, Fernando Siqueira; Patrocinio, Antonio Otavio de Toledo; Oliveira, Cauê Ribeiro deThe development of renewable energy sources (e.g., solar and wind) moves foward, the tendance for replacing fossil fuels increases. However, these technologies have as primary barriers to industrial processes’ efficiency and especially storage. Thus, CO2 reduction routes using these energy sources could chemically store part of the energy as fuels or chemicals, offering alternatives to current oil and gas industry. This process is inspired by photosynthesis, e.g., photochemical or electrochemical processes, using homogeneous or heterogeneous catalysts. Nevertheless, this reaction is thermodynamically unfavorable and has very slow kinetics, given the high stability of the CO2 molecule and the complexity of the redox reactions involved. Therefore, this review addresses this process’s kinetic and thermodynamic challenges, and the fundamental concepts of the photo(electro)chemical processes for CO2 reduction, besides presenting and discussing the materials with the potential to act as catalysts. The main reaction mechanisms and advances in the understanding of such processes are discussed, as well as future perspectives.