Navegando por Autor "Oliveira, Marivaldo Junior Monteiro de"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Modelagem do fluxo multifásico em canal de alto-forno com foco na melhoria da eficiência de separação metal-escória.(2021) Oliveira, Marivaldo Junior Monteiro de; Silva, Carlos Antônio da; Peixoto, Johne Jesus Mol; Silva, Carlos Antônio da; Lemos, Leandro Rocha; Gabriel, Weslei Viana; Peixoto, Johne Jesus MolO canal de corrida é um equipamento importante no processo de fabricação em altos-fornos, promovendo a separação entre gusa líquido e escória após o vazamento. O canal de corrida é um importante equipamento dentro do processo, promovendo a separação metal-escória após o vazamento. Contudo, o padrão de fluxo no interior do canal de corrida é algo pouco estudado devido a sua complexidade. Devido à turbulência no canal durante o vazamento há perda de metal na escória bem como escória entranhada no gusa líquido. A perda de metal na escória é a situação mais crítica, pois afeta diretamente o rendimento metálico da operação. Segundo a literatura, essa perda pode chegar até 2,5% em massa. Analisou-se a influência de fatores geométricos como ângulo e diâmetro de furo de vazamento, vazão dos fluidos e a introdução de controladores de fluxo, sobre o padrão de escoamento dos fluidos, no canal de corrida, por meio de simulação física e numérica. Nas simulações físicas foram utilizadas técnicas de PIV (Particle Image Velocimetry), injeção de corantes com filmagens utilizando câmeras de alta definição, e injeção de traçador salino que geram curvas de distribuição de tempo de residência (DTR) para caracterizar o fluxo no canal. Estas técnicas validaram a modelagem matemática criada em fluidodinâmica computacional (CFX da Ansys®). Resultados de PIV e DTR mostraram boa concordância com o modelo matemático. Portanto, o modelo matemático é capaz de prever o comportamento do fluxo no canal de corrida e avaliar outros parâmetros como a eficiência de separação entre gusa e escória no canal de corrida. A grande emulsificação das fases (ar, escória e gusa) causada pela forte turbulência é o principal fator para perda de gusa no processo. Resultados sugerem que uma combinação entre taxas de vazamento e geometria interna do canal de alto-forno (introdução de controlador de fluxo ou mudança do design) permite otimizar o processo de separação metal/escória minimizando a perda de gusa e aumentando o rendimento metálico da operação. A nova geometria de fundo de canal sugerida por este trabalho poderia ser efetiva, gerando uma economia de US$266,83 por corrida vazada.Item Modeling of two-phase flow in blast furnace trough.(2020) Oliveira, Marivaldo Junior Monteiro de; Rodrigues, Gustavo Fernando Ribeiro; Silva, Itavahn Alves da; Peixoto, Johne Jesus Mol; Silva, Carlos Antônio daAlmost 95% of the world's hot metal production is from blast furnaces, reaching a production of 1.2 billions tons in 2018 according to the World Steel Association. The trough is an important equipment within the blast furnace production process, promoting the separation between hot metal and slag after casting. However, the flow pattern inside the runner is understudied due to its complexity. Due to the turbulence in the trough during the casting, there is metal loss in the slag and also slag entrainment in the hot metal. The metal loss in the slag is the most critical situation as it directly affects the efficiency. The influence of flow rate as well as of geometrical parameters on the flow pattern inside the runner is analyzed by physical and numerical simulation. In the physical simulations, particle image velocimetry (PIV) as well as dye injection using HD cameras and residence time distribution (RTD) curves are used to characterize the flow. These techniques allow to validate the mathematical model created in CFX-Ansys. This work stresses the changing flow features as the slag–metal ratio changes during the casting operation and the role of geometry as far as metal separation from the slag is concerned.