Navegando por Autor "Munk, Michele"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes.(2016) Munk, Michele; Ladeira, Luiz Orlando; Carvalho, Bruno Campos de; Raposo, Nádia Rezende Barbosa; Serapião, Raquel V.; Quintão, Carolina Capobiango Romano; Silva, Saulo Rodrigues; Soares, Jaqueline dos Santos; Jorio, Ado; Brandão, Humberto de MelloThe pellucid zone (PZ) is a protective embryonic cells barrier against chemical, physical or biological substances. This put, usual transfection methods are not efficient for mammal oocytes and embryos as they are exclusively for somatic cells. Carbon nanotubes have emerged as a new method for gene delivery, and they can be an alternative for embryos transfection, however its ability to cross the PZ and mediated gene transfer is unknown. Our data confirm that multiwall carbon nanotubes (MWNTs) can cross the PZ and delivery of pDNA into in vitro-fertilized bovine embryos. The degeneration rate and the expression of genes associated to cell viability were not affected in embryos exposed to MWNTs. Those embryos, however, had lower cell number and higher apoptotic cell index, but this did not impair the embryonic development. This study shows the potential utility of the MWNT for the development of new method for delivery of DNA into bovine embryos.Item Improved bioceramic coatings reinforced by nanostructured talc.(2022) Batista, Ana Bárbara; Silva, Michael Stanley da; Brito, Ana Carolina Ferreira de; Vasconcellos, Rebecca; Munk, Michele; Bueno, Mário José; Godoy, Geralda Cristina Durães de; Alvarenga, Érika Lorena Fonseca Costa de; Vasconcelos, Cláudia Karina Barbosa de; Righi, Ariete; Sousa, Edésia Martins Barros de; Oliveira, Alan Barros de; Batista, Ronaldo Junio Campos; Soares, Jaqueline dos Santos; Neves, Bernardo Ruegger Almeida; Barboza, Ana Paula Moreira; Manhabosco, Taíse MatteNano-talc was successfully incorporated in the hydroxyapatite matrix via pulsed electrodeposition after being obtained using an eco-friendly liquid-phase exfoliation process. Scanning electron microscopy, atomic force microscopy, X-ray spectroscopy, Raman spectroscopy, corrosion and wear resistance, and cytocompatibility tests were used to characterize the biocomposite ceramics. Talc significantly improves the nanomechanical and wear properties of bioceramics (i.e., higher stiffness, reduced friction coefficient, and lower wear damage) as well as corrosion resistance. Talc does not induce cytotoxic activity in in vitro cells and may induce bone maturation as per biocompatibility tests.