Navegando por Autor "Martins, Ana Carolina Pereira"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Steel slags in cement-based composites : an ultimate review on characterization, applications and performance.(2021) Martins, Ana Carolina Pereira; Carvalho, José Maria Franco de; Costa, Laís Cristina Barbosa; Andrade, Humberto Dias; Melo, Tainá Varela de; Ribeiro, José Carlos Lopes; Pedroti, Leonardo Gonçalves; Peixoto, Ricardo André FiorottiSteel slags are by-products generated in high volumes in the steel industry. Their main constituents are calcium, silicon, ferric, aluminum, and magnesium oxides. Larnite, alite, brownmillerite, and ferrite are also found. The presence of expansive compounds cause concern when used in cement-based compos- ites; however, mitigating routes have been proposed. Activation techniques improve the binding proper- ties of steel slag powder, potentiating its use as a supplementary cementitious material (SCM). As an aggregate, steel slag presents good morphological and mechanical properties. Promising mechanical and durability performances in cement-based composites encourage further research to promote the use of steel slag.Item Use of steel slag and LAS-based modifying admixture in obtaining highly eco-efficient precast concrete products.(2023) Martins, Ana Carolina Pereira; Carvalho, José Maria Franco de; Duarte, Matheus do Nascimento; Pedroti, Leonardo Gonçalves; Ribeiro, José Carlos Lopes; Peixoto, Ricardo André FiorottiThis paper presents a study on improving the eco-efficiency of no-slump concrete for precast elements using Basic Oxygen Furnace Slag (BOFS). Recycled BOFS powders and aggregates have been produced to obtain mixtures with better particle size distribution and improved packing density based on a particle packing method. A comprehensive experimental investigation was carried out on mixtures with different cement contents (5%, 10%, and 15% vol.) and compaction energy levels (6, 10, and 20 blows in a sand rammer). A modifying admixture based on Linear Alkyl Benzene Sodium Sulfonate (LAS) has also been evaluated as a workability and cohesiveness enhancer for steel slag concretes. In addition, concrete eco-efficiency was evaluated by measuring the binder intensity (bi) and waste consumption. The highest compaction energy provided packing densities ranging from 0.78 to 0.80, and BOFS aggregates led to better mechanical performances. The BOFS concrete containing 15% cement obtained the best strength (52.1 MPa) and bi value (7.0 kg/m3 /MPa), with a waste consumption of 2356.57 kg/m3 . The mixture with the lowest cement consumption (5% - 121.56 kg/m3 ) and the highest consumption of waste (2637.82 kg/m3 ) reached 16 MPa, delivering a bi of 7.6 kg/m3 /MPa.