Navegando por Autor "Lima, Leonardo Carmo de Andrade"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Chloroquine - induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress.(2015) Vessoni, Alexandre Teixeira; Quinet, Annabel; Lima, Leonardo Carmo de Andrade; Martins, Davi Jardim; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Vieira, Debora Braga; Menck, Carlos Frederico MartinsChloroquine (CQ), a quinolone derivative widely used to treat and prevent malaria, has been shown to exert a potent adjuvant effect when combined with conventional glioblastoma therapy. Despite inducing lysosome destabilization and activating p53 in human glioma cells, the mechanisms under lying cell death induced by this drug are poorly under stood. Here, we analyzed inatime – anddose – dependent manner, the effects of CQ up on mitochondria integrity, autophagy regulation and redox processes in four human glioma cell lines that differin their resistance to this drug. NAC – containing media protected cells against CQ-induced loss of mitochondrial membrane potential (MMP), autophagyic vacuoles (LC3II) accumulation and loss of cell viability induced by CQ. However, we noticed that part of this protection was due to media acidification in NAC preparations, alerting for problems in experimental procedures using NAC. The results indicate that although CQ induces accumulation of LC3II, mitochondria, and oxidative stress, neither of these events is clearly correlated to cell death induced by this drug. The only event elicited in all cell lines at equitoxic doses of CQ was the loss of MMP, indicating that mitochondrial stability is important for cells resistance to this drug. Finally, the data indicate that higher steady-state MMP values can predict cell resistance to CQ treatment.Item Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo.(2014) Rocha, Clarissa Ribeiro Reily; Garcia, Camila Carrião Machado; Vieira, Debora Braga; Quinet, Annabel; Lima, Leonardo Carmo de Andrade; Munford, Veridiana; Belizário, José Ernesto; Menck, Carlos Frederico MartinsMalignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3–7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating tumors.