Navegando por Autor "Filgueiras, Jefferson Gonçalves"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Batch and continuous adsorption of Cu(II) and Zn(II) ions from aqueous solution on bi‐functionalized sugarcane‐based biosorbent.(2022) Teodoro, Filipe Simões; Soares, Liliane Catone; Filgueiras, Jefferson Gonçalves; Azevedo, Eduardo Ribeiro de; Patino Agudelo, Alvaro Javier; Herrera Adarme, Oscar Fernando; Silva, Luis Henrique Mendes da; Gurgel, Leandro Vinícius AlvesA new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate pyromellitate (SBSPy), for the removal of Cu(II) and Zn(II) from single-component aqueous solutions, in batch and continuous modes. The bi-functionalization of the biosorbent with ligands of diferent chemical structures increased its selectivity, improving its performance for removing pollutants from contaminated water. The suc- cinate moiety favored Cu(II) adsorption, while the pyromellitate moiety favored Zn(II) adsorption. Sugarcane bagasse (SB) and SBSPy were characterized using several techniques. Analysis by 13C Multi-CP SS NMR and FTIR revealed the best order of addition of each anhydride that maximized the chemical modifcation of SB. The maximum adsorption capacities of SBSPy for Cu(II) and Zn(II), in batch mode, were 1.19 and 0.95 mmol g-1, respectively. Homogeneous surface difusion, intraparticle difusion, and Boyd models were used to determine the steps involved in the adsorption process. Isothermal titration calorimetry was used to assess changes in enthalpy of adsorption as a function of SBSPy surface coverage. Fixed- bed column adsorption of Cu(II) and Zn(II) was performed in three cycles, showing that SBSPy has potential to be used in water treatment. Breakthrough curves were well ftted by the Thomas and Bohart-Adams models.Item Synthesis and application of sugarcane bagasse cellulose mixed esters. Part I : removal of Co2+ and Ni2+ from single spiked aqueous solutions in batch mode using sugarcane bagasse cellulose succinate phthalate.(2019) Carvalho, Megg Madonyk Cota Elias; Ferreira, Gabriel Max Dias; Almeida, Francine Tatiane Rezende de; Rosa, Nathália Cristina Martins; Silva, Isabela Almeida; Filgueiras, Jefferson Gonçalves; Azevedo, Eduardo Ribeiro de; Silva, Luis Henrique Mendes da; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius AlvesSugarcane bagasse cellulose mixed ester succinate phthalate (SBSPh) was synthesized by a novel one-pot reaction method. The effects of temperature, time and mole fraction of succinic anhydride (χSA) on the responses weight gain (wg), number of carboxylic acid groups (nT,COOH), and adsorption capacity (q) of Co2+ and Ni2+ were evaluated by a 23 experimental design. The chemical structure of the material was elucidated by Fourier transform infrared, 13C Multiple Cross-Polarization solid-state NMR spectroscopy and 1H NMR relaxometry. The best SBSPh synthesis condition (100 °C, 11 h, χSA of 0.2) yielded a wg of 59.1%, nT,COOH of 3.41 mmol g−1, and values of qCo2+ and qNi2+ of 0.348 and 0.346 mmol g−1, respectively. The Sips model fitted better the equilibrium data, and the maximum adsorption capacities (pH 5.75 and 25 °C) estimated by this model were 0.62 and 0.53 mmol g−1 for Co2+ and Ni2+, respectively. The ΔadsH° values estimated by isothermal titration calorimetry were 8.43 and 7.79 kJ mol−1 for Co2+ and Ni2+, respectively. Desorption and re-adsorption efficiencies were evaluated by a 22 experimental design, which showed that SBSPh adsorbent can be recovered and reused without significant loss of adsorption capacity.Item Synthesis and application of sugarcane bagasse cellulose mixed esters. Part II : removal of Co2+ and Ni2+ from single spiked aqueous solutions in batch and continuous mode.(2019) Almeida, Francine Tatiane Rezende de; Carvalho, Megg Madonyk Cota Elias; Xavier, Amália Luísa Pedrosa; Ferreira, Gabriel Max Dias; Silva, Isabela Almeida; Filgueiras, Jefferson Gonçalves; Azevedo, Eduardo Ribeiro de; Silva, Luís Henrique Mendes da; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius AlvesSugarcane bagasse cellulose succinate trimellitate (SBST) was prepared by a one-pot synthesis method. The synthesis of this novel mixed ester was investigated by a 23-factorial design. The parameters investigated were time, temperature, and succinic anhydride mole fraction (χSA). The responses evaluated were the adsorption capacity (qCo2+ and qNi2+), weight gain (wg), and number of carboxylic acid groups (nT,COOH). 13C Multiple Cross-Polarization solid-state NMR spectroscopy, 1H NMR relaxometry, and Fourier-transform infrared spectroscopy were used to elucidate the SBST structure. The best SBST reaction conditions were 100 °C, 660 min, and χSA of 0.2, which yielded SBST with a wg of 57.1%, nT,COOH of 4.48 mmol g−1, and qCo2+ and qNi2+ of 0.900 and 0.963 mmol g−1, respectively. The maximum adsorption capacities (Qmax) (pH 5.75, 25 °C) estimated by the Redlich-Peterson model for Co2+ and Ni2+ were 1.16 and 1.29 mmol g−1. The ΔadsH° values for Co2+ and Ni2+ adsorption obtained by isothermal titration calorimetry were 8.03 and 6.94 kJ mol−1. Regeneration and reuse of SBST were investigated and the best conditions applied for fixed-bed column adsorption in five consecutive cycles. SBST was fully desorbed and Qmax values for Co2+ (0.95 mmol g−1) and Ni2+ (1.02 mmol g−1) were estimated using the Bohart-Adams model.