Navegando por Autor "Enayatifar, Rasul"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem.(2016) Oliveira, Fernando Bernardes de; Enayatifar, Rasul; Sadaei, Hossein Javedani; Guimarães, Frederico Gadelha; Potvin, Jean YvesThe Multi-Depot Vehicle Routing Problem (MDVRP) is an important variant of the classical Vehicle Routing Problem (VRP), where the customers can be served from a number of depots. This paper introduces a cooperative coevolutionary algorithm to minimize the total route cost of the MDVRP. Coevolutionary algorithms are inspired by the simultaneous evolution process involving two or more species. In this approach, the problem is decomposed into smaller subproblems and individuals from different populations are combined to create a complete solution to the original problem. This paper presents a problem decomposition approach for the MDVRP in which each subproblem becomes a single depot VRP and evolves independently in its domain space. Customers are distributed among the depots based on their distance from the depots and their distance from their closest neighbor. A population is associated with each depot where the individuals represent partial solutions to the problem, that is, sets of routes over customers assigned to the corresponding depot. The fitness of a partial solution depends on its ability to cooperate with partial solutions from other populations to form a complete solution to the MDVRP. As the problem is decomposed and each part evolves separately, this approach is strongly suitable to parallel environments. Therefore, a parallel evolution strategy environment with a variable length genotype coupled with local search operators is proposed. A large number of experiments have been conducted to assess the performance of this approach. The results suggest that the proposed coevolutionary algorithm in a parallel environment is able to produce high-quality solutions to the MDVRP in low computational time.Item A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment.(2016) Coelho, Vitor Nazário; Coelho, Igor Machado; Coelho, Bruno Nazário; Reis, Agnaldo José da Rocha; Enayatifar, Rasul; Souza, Marcone Jamilson Freitas; Guimarães, Frederico GadelhaThe importance of load forecasting has been increasing lately and improving the use of energy resources remains a great challenge. The amount of data collected from Microgrid (MG) systems is growing while systems are becoming more sensitive, depending on small changes in the daily routine. The need for flexible and adaptive models has been increased for dealing with these problems. In this paper, a novel hybrid evolutionary fuzzy model with parameter optimization is proposed. Since finding optimal values for the fuzzy rules and weights is a highly combinatorial task, the parameter optimization of the model is tackled by a bio-inspired optimizer, so-called GES, which stems from a combination between two heuristic approaches, namely the Evolution Strategies and the GRASP procedure. Real data from electric utilities extracted from the literature are used to validate the proposed methodology. Computational results show that the proposed framework is suitable for short-term forecasting over microgrids and large-grids, being able to accurately predict data in short computational time. Compared to other hybrid model from the literature, our hybrid metaheuristic model obtained better forecasts for load forecasting in aMG scenario, reporting solutions with low variability of its forecasting errors.